Advancing climate change information system to foster adaptation in Hungary

<u>Gabriella Zsebeházi</u>, Beatrix Bán, Péter Szabó Regional Climate Modelling Group Hungarian Meteorological Service, Budapest

European Conference for Applied Meteorology and Climatology | 4 September 2018

European Union Cohesion Fund

SZÉCHENYI 202

INVESTING IN YOUR FUTURE

- **1. Different user needs**
- 2. From climate change information to decision making: the objective pathway
- 3. The KlimAdat project

4. Summary

Who are the users and what are their needs?

- DECM C3S project launched a survey last year to find the answers:
 - 3 different types of users: data user, product user, non user
 → have very different needs

EMS 2018 | 4 September 2018 | Budapest

	RENT USER N	EEDS Climate Change Service
		Ň
Data user		Product user
CMIP, CORDEX, in- house data	Source of data	Research institues, national services
RCP4.5, RCP8.5	Scenarios	Idealised scenarios (e.g.1.5 °C warming)
Low: Climate indices, bias adjustment, statistical downscaling	Post processing	High: maps, graphs, etc.
>61% satisfied, but some areas need higher	Model resolution	69% satisfied
Accessing and downloading data	Guidance	Visualising, accessing, interpreting information
		Viktor et al 2017

EMS 2018 | 4 September 2018 | Budapest

CLIMATE CHANGE INFO → DECISION MAKING: THE OBJECTIVE PATHWAY

CLIMATE CHANGE INFO → DECISION MAKING: THE OBJECTIVE PATHWAY

LET'S SEE IT IN PRACTICE FOR HUNGARY

LET'S SEE IT IN PRACTICE FOR HUNGARY

HOW COULD IT BE IMPROVED?

From objectivity's side

- More RCM simulations to be taken account
- More sophisticated post processing (e.g. modelling urban climate)
- More methods to estimate impact

Uncertainty-based decision making

From users' side

- ✓ Data outside country borders (e.g. for hydrology)
- ✓ No fixed 30-year periods
- High spatial and temporal resolution (what is high depends on the impact area)

Information gained from user consultations, workshops

THE KLIMADAT PROJECT (2016–2020)

- KlimAdat: Assessment of climate change impacts in Hungary with regional climate model simulations and developments of a representative climate database
- Funded by the Hungarian Government and the European Union
- Main goals:
 - Developing RCM mini ensemble of OMSZ based on ALADIN-Climate and REMO, using RCP4.5 and RCP8.5
 - Creating a GIS system containing post-processed RCM data tailored to the user needs
 - Continuing education via workshops and publication

RCM SIMULATIONS IN KLIMADAT

EMS 2018 | 4 September 2018 | Budapest

FULFILLING USER NEEDS: DATA USER

Ingredients for a dynamical impact model

- Gridded data
- Raw or bias corrected data
- High temporal resolution (e.g. daily, or hourly data)
- Individual ensemble members have to be used

Requires lots of computation space tailored quidance from the
climate modelers to select, interpret and use RCM data.
*

FULFILLING USER NEEDS: DATA USER

Ingredients for a dynamical impact model

- Gridded data
- Raw or bias corrected data
- High temporal resolution (e.g. daily, or hourly data)
- Individual ensemble members have to be used

FULFILLING USER NEEDS: PRODUCT USER

Ingredients for statistical estimations on impacts, decision making:

- Gridded or spatially averaged data (e.g. for county-level)
- Information on 30-year mean change or bias corrected future data
- Period should be flexible (e.g. 2021-2050, 2031-2060, etc.)
- Climate indices
- Communicating uncertainty information, e.g.:
 - Smallest and largest change
 - Probability of certain scenarios (e.g. temperature change > 1 °C)

SUMMARY

- For targeted and sustainable adaptation high quality observed and modelled information is needed
- Building an information system that meets these requirements started in 2013 in Hungary
- The aim of the ongoing KlimAdat project is to
 - further develop the RCM ensemble system
 - Develop an informative and user friendly GIS system, that serves certain impact users' and decision makers' needs
 - Train and educate users
- How these fit into the large European climate services (e.g. C3S)?
 - Large focus is on serving national needs + providing information that inseparably contains uncertainty

THANK YOU FOR YOUR ATTENTION!

E-mail: zsebehazi.g@met.hu

HUNGARIAN

Government

European Union Cohesion Fund

INVESTING IN YOUR FUTURE