
DOI:10.28974/idojaras.2024.2.6  

237 

IDŐJÁRÁS 
Quarterly Journal of the HungaroMet Hungarian Meteorological Service 

Vol. 128, No. 2, April – June, 2024, pp. 237–249 

Spatiotemporal imputation of missing rainfall values to 
establish climate normals 

 
Brian O’Sullivan* and Gabrielle Kelly 

 
Department of Mathematics and Statistics,  

University College Dublin 
UCD Earth Institute 

 
 

*Corresponding author E-mail: brian.osullivan3@ucdconnect.ie 
 

(Manuscript received in final form January 23, 2024)  
 

 
 

Abstract— Spatial kriging interpolation has been a widely popular geostatistical method 
for decades, and it is commonly used to predict both gridded and missing climatic variables. 
Climate data is typically monitored across a variety of timescales, from daily measurements 
to thirty-year periods, known as long-term averages (LTAs). LTAs can be constructed from 
daily, monthly, or annual measurements so long as any missing values in the data are 
infilled first. Although spatial kriging is an available method for the prediction of missing 
data, it is limited to a single moment in time for each imputation. Not only can missing 
values only be predicted with observations measured at the same instance in time, but the 
entire imputation process must be repeated up to the number of timesteps in which missing 
data is present. This study investigates the imputation performance of spatiotemporal 
regression kriging, an extension of spatial regression kriging which simultaneously 
accounts for data across both space and time. Hence, missing data is predicted using 
observations from other points in time, and only a single imputation process is required for 
the entire data set. 

Spatiotemporal regression kriging has been evaluated against a variety of 
geostatistical methods, including spatial kriging, for the imputation of monthly rainfall 
totals for the Republic of Ireland. Across all tests, the spatiotemporal methods presented 
have outperformed any purely spatial methods considered. Furthermore, three different 
regression methods were considered when de-trending the data before interpolation. Of 
those tested, generalized least squares (GLS) was shown to provide the best results, 
followed by elastic-net regularization when GLS proved computationally unavailable. 
Finally, the data set has been infilled using the best performing imputation method, and 
precipitation LTAs are presented for the Republic of Ireland from 1981–2010. 
 
Key-words: spatiotemporal kriging, rainfall, long-term averages, missing data, imputation, 
kriging, Ireland, elastic-net 
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1. Introduction 

Climate normals or LTAs are the standard measure by which the climate is 
described, providing the average climatic conditions experienced by a region over 
a thirty-year period. A thorough understanding of precipitation is crucial to 
numerous endeavours in Ireland, ranging from agriculture to flood risk 
management (Charlton et al., 2006; Naughton et al., 2017). During the measuring 
period, missing data entries commonly arise for rain gauge stations. There are 
various potential causes for this, such as stations being opened, closed, or moved, 
malfunctioning equipment, or insufficient observations taken by the station 
monitor. Missingness present in the data set must first be addressed before 
continuing with any climatological or hydrological research, including the 
production of LTAs. This creates the need for robust and sophisticated methods 
which impute missing entries as accurately as possible in order to minimize bias 
caused by missingness in future analysis. In this study, the performance of 
spatiotemporal regression kriging is explored for the purpose of imputing missing 
monthly precipitation totals. Elastic-net regularization (Zou and Hastie, 2005) is 
also investigated as a potential model to de-trend the data for regression kriging. 

Kriging is a popular geostatistical method for predicting variables of interest 
over a spatial field. Developed originally by Matheron (1963), it is widely applied 
in a variety of fields such as environmental science, mining, and remote sensing 
(Tavares et al., 2008; Mondal et al., 2017). The method interpolates values as 
weighted averages of observations from nearby stations, where weights are 
calculated according to the estimated variance between sample stations and the 
target point. Numerous extensions of kriging have been explored, and popular 
examples include universal kriging, cokriging, and Bayesian kriging (Handcock 
and Stein, 1993; Myers, 1982). Universal kriging is a particularly widespread 
method that includes a regression of the target variable against auxiliary variables 
present in the data (elevation, latitude, longitude, etc.). As kriging assumes a 
second order stationarity across the field, it is necessary to remove any trends 
initially present in the data. Hence, the popularity of universal kriging when 
kriging interpolation is employed with climate data. Small variations to universal 
kriging exist, namely, regression kriging and kriging with external drift. These 
three methods differ slightly in their implementation, but are all generally the 
same technique. Regression kriging divides the approach into a two-step process, 
where trends in the data are first removed by regression and the remaining 
residuals are interpolated by ordinary kriging. The regression method achieved by 
universal kriging is known as generalized least squares (GLS), and this approach 
is theoretically optimal for a linear estimator. However, the modular approach of 
regression kriging allows one to consider alternative regression methods such as 
elastic-net regularization or principle component regression (Zou and Hastie, 
2005; Jolliffe, 1982). 
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Originally proposed as a purely spatial method, kriging has been extended to 
spatiotemporal contexts. Known as spatiotemporal kriging, the distance between 
points across a temporal field is considered alongside spatial distance, such that 
interpolation can be achieved using a data set not bound to a single point in time 
(Montero et al., 2015). This approach lends itself particularly well to imputation, 
as missing observations can have nearby temporal neighbors either before or after 
the target point which are observed from the same station. Additionally, the entire 
data set can be imputed at once, removing the need to undergo a separate kriging 
procedure for each time step. Spatiotemporal kriging requires the production of 
more sophisticated spatiotemporal covariance models (Grӓler et al., 2016), but 
otherwise it is formulated similarly to spatial kriging. Spatiotemporal kriging has 
been applied successfully in many contexts. For example, Hengl (2012) predicted 
daily temperatures through spatiotemporal regression kriging with a sum-metric 
variogram model. The remainder of this study is reported as follows: First, a short 
overview of the data is provided. Then, the methodology behind both elastic-net 
regularization and spatiotemporal regression kriging is outlined. The results 
comprise of the imputation performance of all considered methods, followed by 
a brief discussion.  All research has been implemented using the R programming 
language (R Core Team, 2021), with a particular emphasis on the glmnet 
(Friedman et al., 2010) and gstat (Grӓler et al., 2016) packages. 

2. Methods 

The island of Ireland has a temperate oceanic climate with an abundance of 
rainfall throughout the year (Lennon, 2015). Precipitation is monitored by Met 
Éireann, the Irish meteorological service, using over 1100 rain gauge stations 
located around the country. The considered data set consists of monthly 
precipitation totals from 474 stations over a thirty-year monitoring period of 
1981–2010. At least 50% of data-entries from these stations are recorded as non-
missing. Additionally, the data set has been considered at different levels of 
completeness, i.e., only considering stations with at least 70% (365 stations), 50% 
(474 stations), or 30% (679 stations) of their entries recorded non-missing, 
respectively. The rain gauge distribution of the monitoring network at station 
completeness cutoffs of 100%, 70%, and 30% are displayed in Fig. 1. 
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Fig. 1. Met Éireann precipitation monitoring network for the Republic of Ireland from 
1981–2010. The network is presented at different completeness cutoffs (100%, 70%, and 
30%, respectively). 

 
 

 
 
 

Typically, when geospatial climate data is interpolated, any trend present in 
the data is removed. This is a necessity for regression kriging as the ordinary 
kriging step assumes a second-order stationarity with no external trend or "drift". 
Drift is described as the continuous change of the underlying target variable. It is 
modeled as a function of available predictor variables, e.g., longitude, latitude, 
elevation, etc., and how changes in these variables correspond with changes in the 
target. For linear effects, this function is simply expressed as the well-known 
linear model: 𝑦 ൌ 𝑋𝛽 ൅  𝜖. Removing drift is a fairly straightforward task, and 
can be done in a variety of ways. Ordinary least squares (OLS) is an elementary 
option, where regression parameters are determined according to the estimator: 𝛽መ ൌ ሺ𝑋்𝑋ሻିଵ𝑋்𝑦. However, OLS relies on the assumption that the underlying 
model residuals are independent and uncorrelated. Upon inspection of the 
variogram of residuals after regression is conducted (Fig. 2), this is clearly not the 
case. Alternatively, GLS accounts for auto-correlation between residuals by 
including the variance-covariance matrix of the residuals, 𝐶, in the estimator:  𝛽መ ൌ ሺ𝑋்𝐶ିଵ𝑋ሻିଵ𝑋்𝐶ିଵ𝑦. In combination with kriging, GLS gives the best 
linear unbiased estimator (BLUP). Besides these two unbiased regression 
techniques, a third method known as elastic-net regularization has also been 
considered.  
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Fig. 2. Left: Empirical spatiotemporal variogram of residuals. Right: Fitted sum-metric 
variogram model consisting of spatial, temporal, and spatiotemporal Matérn structures. 

 

 

 
 
Developed by Zou and Hastie (2005), elastic-net regularization is a 

technique designed to address high-dimensionality and/or highly correlated 
variables in a regression context. The objective function of elastic-net differs from 
that of OLS by the addition of a regularization penalty, 𝐿, i.e., 

 
 minఉబ,ఉ ቄଵே ‖𝑦 − 𝛽଴ − 𝑋𝛽‖ଶ ൅ 𝐿ቅ. (1) 

 
The elastic-net penalty is in fact a convex sum of penalties from two other 

methods, lasso regression and ridge regression, 𝐿ଵ ൌ 𝜆‖𝛽‖ଵ and 𝐿ଶ ൌ 𝜆‖𝛽‖ଶଶ, 
respectively. Both penalties are designed to shrink the regression coefficients, 𝛽, 
present in the standard linear model by constraining either the L1-norm or L2-norm 
of all 𝛽 below a constant, i.e., ‖𝛽‖ଵ ൌ ∑ |𝛽௜|௣௜ୀଵ ൏ 𝑐 for lasso regression and ‖𝛽‖ଶଶ ൌ ∑ 𝛽௜ଶ௣௜ୀଵ ൏ 𝑐 for ridge regression. The tuning parameter, 𝜆, determines 
the degree of shrinkage that is applied to the regression parameters. It is normally 
preselected before regression or can be fit by 10-fold cross validation using the 
cv.glmnet function available in R package, glmnet (Friedman et al., 2010). 
By considering a linear combination of both 𝐿ଵ and 𝐿ଶ penalties, the elastic-net 
penalty is expressed as follows: 

 
 𝐿ாே௘௧ ൌ 𝜆∑ ሺ𝛼𝛽௜ଶ ൅ ሺ1 − 𝛼ሻ|𝛽௜|ሻ௣௜ୀଵ . (2) 
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An additional parameter, 𝛼 ∈ ሾ1, 0ሿ, is introduced which describes how 
closely the elastic-net penalty is to lasso (𝛼 = 1) or ridge (𝛼 = 0) regression. 
Elastic-net boasts the advantages of feature selection (from lasso) and robustness 
in the presence of multicollinearity (from ridge). Table 1 describes the covariates 
that were considered in every regression model implemented during this study. 
As normally distributed data is desirable when using regression prediction 
methods, a square-root transformation has also been applied to the initial data 
before imputation. This transformation is reversed at the last step in imputation 
and has shown to greatly improve the imputation results. 

Kriging predicts values by a weighted average method, 𝑌ത = ∑ 𝑤ଵ𝑌(𝑥௜)ே௜ୀଵ , 
where weights, 𝑤, are assigned to nearby observations according to their 
spatiotemporal relationship with the target. A Gaussian random field, 𝑌, over the 
spatial and temporal domains, 𝑆 and 𝑇, is assumed, and each value is observed at a 
distinct point in space and time. That is, 𝑌(𝑠, 𝑡) is the total monthly precipitation 
measured by the station located at 𝑠 for the month, 𝑡. The target variable is considered 
as a sum of deterministic components, 𝑚(𝑠, 𝑡), and random components, 𝜖(𝑠, 𝑡): 

 
 𝑌(𝑠, 𝑡) = 𝑚(𝑠, 𝑡)  +  𝜖(𝑠, 𝑡). (3) 

 
The central idea of kriging is the assumption that 𝑌 is second-order stationary 

so long as the deterministic component, 𝑚(𝑠, 𝑡), is constant. Here is why any drift 
present in the data must initially be removed before kriging. Once second-order 
stationarity is achieved, the covariance between any pair of observations does not 
depend on their positions, but only on the distance between them. This allows the 
introduction of the variogram which models the semivariance of point pairs, i.e., 
the dependence between them with respect to their separation: 

 
 𝛾(𝑠ଵ, 𝑡ଵ, 𝑠ଶ, 𝑡ଶ) = ଵଶ 𝑉𝑎𝑟ሼ𝑌(𝑠ଵ, 𝑡ଵ) − 𝑌(𝑠ଶ, 𝑡ଶ)ሽ = 𝛾(ℎ,𝑢). (4) 
   

All data entries, 𝑥 = 𝑥(𝑠, 𝑡), are separated both spatially, ℎ, and temporally, 𝑢. The construction of 𝛾 is done over multiple steps. An empirical variogram is 
first created from the observed data, where all available point pairs are grouped 
into bins according to their separation. The average 𝛾 of each bin is calculated and 
plotted, upon which a parametric representation of 𝛾 is fitted to the empirical 
variogram using the limited-memory BFGS algorithm in gstat (L-BFGS). 
Generally, the parametric form of a purely spatial variogram is as follows: 

 
 𝛾(ℎ) = 𝜏ଶ + 𝜎ଶ(1 − 𝜌(ℎ)) (5) 

 
The correlation, 𝜌(ℎ), is a monotonic decreasing function where 𝜌(0) = 1 and 𝜌(ℎ) = 0 as ℎ → ∞. Three parameters are needed to represent the variogram 

model – the nugget 𝜏ଶ, the sill 𝜏ଶ + 𝜎ଶ, and the range 𝜙 (Diggle and Giorgi, 
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2019). For Matérn covariance models, an additional parameter must be 
considered, 𝜅, which is known as the "shape". 

With these parameters, various covariance models can be fit to the spatial 
empirical variogram. Popular models include the Spherical, Gaussian, 
Exponential, and Matérn models. A Matérn structure was used throughout this 
study and was found to provide the best imputation performance. Its structure 
contains a modified Bessel function of order, 𝜅(𝐾఑(ℎ/𝜙)), and a Gamma function Γ(𝜅). It is presented below: 

 
 𝜌(ℎ) = ሼ2఑ିଵΓ(𝜅)ሽିଵ(ℎ𝜙−ଵ)఑𝐾఑(ℎ𝜙−ଵ). (6) 

 
A variety of covariance models are available for the spatiotemporal context 

(Grӓler et al., 2016). The sum-metric structure was applied by Hengl et al. (2012) 
for daily temperature data and has been found to be similarly suitable for this 
study. The sum-metric model consists of three components, a spatial variogram 𝛾௦(ℎ), a temporal variogram 𝛾௧(𝑢), and a joint variogram, 𝛾௝௢௜௡௧(ඥℎଶ + (𝜒 ∙ 𝑢)ଶ): 

 
 𝛾(ℎ,𝑢) = 𝛾௦(ℎ) + 𝛾௧(𝑢) +  𝛾௝௢௜௡௧(ඥℎଶ + (𝜒 ∙ 𝑢)ଶ). (7) 

 
Each component has been modeled using a Matérn correlation structure (Eqs. 

5 and 6) with their own distinct fitted parameters (𝜎ଶ, 𝜏ଶ, 𝜙, and 𝜅). The third term, 𝛾௝௢௜௡௧, also contains an anisotropy term, 𝜒, allowing temporal separation to be scaled 
relative to an equivalent spatial distance. The anisotropy adds an additional 
parameter to the sum-metric model, bringing the number of parameters needed to be 
fit by L-BFGS to thirteen (four for each Matérn structure and 𝜒). Fig. 2 displays the 
fitted spatiotemporal variogram for the de-trended precipitation data. Notably, the 
dependency is observed to be much stronger spatially than temporally. As the data is 
expressed in monthly time steps, the weaker temporal dependency may be attributed 
to the long period of time between data entries. 

Once a variogram of the residuals has been produced and fitted, prediction 
weights, 𝑤, can be calculated through the kriging system of equations. For 
ordinary kriging, the mean, 𝑚(𝑠, 𝑡), is assumed unknown, however, this can be 
relaxed by introducing the constraint that all weights add to one: ∑ 𝑤௜ெ௜ୀଵ = 1. The 
missing value at target point, 𝑥଴  =  𝑥(𝑠଴, 𝑡଴), is predicted by a weighted average 
of the 𝑀 = 700 nearest observations over all space and time, 𝑥௜, 𝑏𝑦 ∑ 𝑤௜𝑌(𝑥௜)ெ௜ୀଵ . The ordinary kriging system of equations is given by Eq. (8), 
where 𝛾൫𝑥௜ , 𝑥௝൯ெ×ெ is an 𝑀 × 𝑀 matrix of the semivariances between all 
observed point pairs considered in the kriging system, and 𝛾(𝑥଴, 𝑥௜)ெ×ଵ is a 
column vector of the semivariances between the target and the observed points: 
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 𝛾൫𝑥௜ , 𝑥௝൯ெ×ெ𝑤ெ×ଵ = 𝛾(𝑥଴, 𝑥௜)ெ×ଵ                    ෍ 𝑤௜ே௜ୀଵ = 1 (8) 

 
Inverse distance weighting (IDW) is a simple benchmark method which also 

predicts target points by weighted average. Instead of modeling a dependency 
structure like kriging however, an inverse spatial power law is assumed, and the 
corresponding weights are described as 𝑤 = ℎିଶ. The imputation performance of 
three methods have been evaluated: inverse distance weighting, spatial regression 
kriging, and spatiotemporal regression kriging. Any trend present in the data 
(Table 1) has been removed prior to interpolation for all methods. Furthermore, 
three trend removal procedures were considered for spatiotemporal kriging: OLS, 
elastic-net, and GLS. When implementing GLS, the variance-covariance matrix, 𝐶, is obtainable through the modeled theoretical variogram. This is ultimately 
achieved by an iterative process, where residuals are first obtained to produce the 
variogram, and regression is repeated using GLS and the now modeled 
dependency structure. Unfortunately for larger data sets, inversion of 𝐶 proved 
computationally unattainable. Tests have been conducted on two data sets from 
1981–2010: 474 stations across the Republic of Ireland and a smaller subset of 27 
stations in Greater Dublin. Inclusion of the smaller data set allows GLS 
spatiotemporal kriging to be considered. The imputation of each method was 
evaluated under 10-fold cross-validation using three performance metrics: root 
mean squared error (RMSE), relative RMSE (RMSER), the RMSE normalized by 
the deviation of the observed data, and R2, the percentage of variance explained 
between observed (𝑦) and predicted values (𝑦ො): 

 𝑅𝑀𝑆𝐸 =ට∑ (௬೔ି௬ො೔)మ೔ಿసభ ே  ;    𝑅𝑀𝑆𝐸ோ = ோெௌாఙ  ;    𝑅ଶ = 1 − ∑ (௬೔ି௬ො೔)మ೔∑ (௬೔ି௬ത೔)మ೔ . (9) 

 
 

 
 

Table 1. All covariates used when removing trends in precipitation data by regression. 

Covariate Description 

east & east2 Easting, Irish Grid TM75 (m/m2) 
north & north2 Northing, Irish Grid TM75 (m/m2) 
east × north Easting/Northing interaction (m2) 
points5 & points52 Mean elevation in 5 km radius around station (m/m2) 
exp25k Ocean cover within 25 km radius of station (%) 

t Time of observation in months from January 1981 to December 2010 
(i.e., 𝑡 ∈ (1, 360)) 
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3. Results 

Imputation performance is reported in Table 2. Across all three metrics (RMSE, 
RMSER, and R2), it is clear that the inclusion of a temporal component in the 
imputation method greatly benefits the prediction accuracy for both large and 
small data sets. Moreover, this improvement is shown to be consistent throughout 
the year in Fig. 3, where the spatiotemporal methods tested provide a steady 
improvement for every month. With regards to the regression method applied, 
elastic-net has shown to slightly outperform OLS in both cases, although GLS 
expectedly produces the best results when available. Notably, the choice of 
regression method has a considerably lower impact on imputation accuracy when 
compared to the introduction of spatiotemporal approaches.  
 

Table 2. 10-fold cross validation results for Republic of Ireland and Greater Dublin. For 
the 474 stations, ST-kriging with GLS was unavailable due to computational intractability 

 Republic of Ireland (474 stations) Greater Dublin (27 stations) 

Method RMSE RMSER  R2 RMSE RMSER R2 

IDW 21.21mm 30.28% 0.909 15.69 mm 29.81% 0.911 

Spatial Kriging 20.61mm 29.41% 0.914 18.13 mm 34.44% 0.884 

ST-Kriging 17.47mm 24.94% 0.938 14.05 mm 26.70% 0.929 
ST-Kriging 
ENET 17.42mm 24.86% 0.938 13.89 mm 26.39% 0.930 

ST-Kriging GLS - - - 13.80 mm 26.23% 0.931 

 
 

 
Fig. 3. Monthly RMSE calculated by 10-fold cross validation of the network with a 
completeness cutoff of 50%. Spatiotemporal methods are shown to consistently outperform 
throughout the year. 
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In addition to Table 2, further tests have been conducted where the data set 
comprises of increasingly incomplete stations. Three data sets have been tested 
where the included stations have a completeness of at least 70%, 50%, or 30%, 
respectively. The best performing method for large data sets, spatiotemporal 
kriging with elastic-net, was evaluated alongside these data sets to explore how 
the method performs against progressively sparser data. Results from Table 3 
demonstrate that the inclusion of less complete stations improves the overall 
RMSE. However, no improvement in RMSER was observed between a cutoff 
completeness of 50% and 30%. RMSER allows imputation performance to be 
compared across different data sets, a benefit which is unavailable to RMSE 
(Hengl, 2007). Thus the results indicate that the appropriate completeness cutoff 
to consider during imputation lies somewhere close to the range of 50% to 30%. 

 
 
 
 
Table 3. 10-fold cross validation results according to different completeness cutoffs. 
Imputation is achieved by spatiotemporal kriging with elastic-net. 

% Missing No. Stations RMSE (mm) RMSER (%) R2 

70% 365 17.89 25.18 0.937 

50% 474 17.42 24.86 0.938 

30% 679 17.15 24.86 0.938 
 
 

 
 
Once the data set is fully imputed, LTAs can finally be produced. Fig. 4 

demonstrates the monthly precipitation LTAs for the island of Ireland, created 
using the fully imputed data set with a 50% completeness cutoff. All missing data 
entries were first imputed by elastic-net spatiotemporal kriging, then monthly 
averages were calculated and interpolated on to a 1 km × 1 km grid. Notably from 
Fig. 1, no rain gauge stations were available for Northern Ireland in this study, 
and as such, the interpolated values are not expected to sufficiently represent the 
precipitation over this region. Overall, a mean monthly rainfall of mm is reported 
from 1981–2010, with an increase in rainfall observed in the west and southwest 
of the island, particularly during the winter months. 
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Fig. 4. Gridded long-term averages of monthly precipitation from 1981–2010 (1 km × 1 km).  

 

 

4. Conclusion 

A spatiotemporal regression kriging method has been demonstrated to show 
improved imputation capabilities when compared to its purely spatial counterpart. 
Furthermore, elastic-net regularization has shown to be a suitable regression 
method to remove any trend present in a climatic data set. Although GLS provides 
slightly better results, it is not always available when working with large data sets, 
which is typically the case in a spatiotemporal context. Given the achieved results, 
spatiotemporal kriging is presented as a viable option for the imputation of 
incomplete precipitation data sets. The small adjustment from OLS to elastic-net 
when removing trend may also be worthwhile, as improved imputation can be 
achieved for very little additional computational cost. For spatiotemporal kriging, 
however, it is noted that the increased computation is significant, even when GLS 
is not considered. The recorded computational time needed to impute for the 50% 
completeness cutoff 474 stations using spatial kriging was 29.29 seconds, far 
smaller than the 6.48 hours required for spatiotemporal kriging.  

For future research, improving the computational viability of GLS is of 
utmost concern, potentially via a likelihood-based or Bayesian approach to model 
fitting. Additionally, the entire island of Ireland may be considered by including 
data from the Northern Ireland rainfall monitoring network managed by the 
United Kingdom Meteorological Office. This is generally standard procedure in 
other climatological research from Met Éireann (Walsh, 2016), and would allow 
for a more comprehensive overview of the complete island. Spatiotemporal 
kriging may also lend itself well in the imputation for other climatic variables such 
as temperature or wind speed. Evidently, the temporal dependency is much 
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stronger amongst such variables, a property that which would allow 
spatiotemporal kriging to yield substantial improvements. However, for Ireland, 
the observation coverage of rainfall is considerably higher than many other 
variables, and the lack of sufficient data may limit the capabilities of these more 
sophisticated imputation methods. 
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