DEZSŐ DÉVÉNYI 1948-2009

See more slides about Dezső's life and achievements at https://met.hu/rolunk/rendezvenyek/

Teacher, supervisor, mentor, colleague and a friend "FATHER of NWP in HUNGARY"

Dezső in Reading in November, 2009

Dezső as head of NWP

Dezső's main interest was NWP, data assimilation in particular

- 1988- Adaptation SMHI LAM system
 - Dezső visited SMHI and brought home the code
 - It became operational at HMS in 1991
- 1990: Dezső represented HMS at the kick-off of the NWP cooperation initiated by Meteo-France (later called ALADIN)
- 1991: Initiation of ECMWF "cooperative state" membership (Dezső played a crucial role)

Dezső as a teacher and supervisor

- 1982-1991: Dezső gave lectures for meteorology students on NWP (numerical methods, stability issues, Galerkin methods, NWP models, optimal interpolation...)
- He was supervisor for numerous master and PhD theses
- He was co-author of a mathematical statistics for meteorologists textbook

Matematikai statisztikai módszerek a meteorológiában

Dezső's candidate (PhD)work

Dezső got his title in 1991: Application of satellite data in the objective analysis of meteorological fields

Budapest, 1991 Dévényi Dezs

Adjungalt egyenletek mödszere

egyenletrendszerek

gr43 javasolta az adjungált egyenletek módszerét Marcsuk, 1976). Hosszabb érdektelenségi az 1980-as évek közepétől támadt fel az

módszerek adatasszimilációs feladatokra való gdekloue skalmazása iránt; Le Dimet and Talagrand, 1986; Talagrand plate courtier, 1987; Thacker and Long, 1988; Talagrand and Courtier, 1987; Thacker and Long, 1988; Courtier and and Court 1990; laisd meg az ezekben a cikkekben megadott plagrammer hivatkozásokat). Az alábbiakban Thacker and Long (1988) alapján mutatjuk be a módszer alapelvét

TekintsUnk egy időben implicit, nemlineáris rognosztikai egyenletet diszkrét alakban N számű Időlépcsőre:

 $\underline{\mathbf{E}}_{\mathbf{n}} \left[\underline{\mathbf{x}}_{\mathbf{n}}, \underline{\mathbf{x}}_{\mathbf{n-1}}, \underline{\mathbf{f}}_{\mathbf{n}} \right] = 0, \quad \mathbf{n} = 1, \dots, N.$

asszimilációs

(2.22)

itt x jelenti a modell állapotot az n-edik időpontban és f elel meg a [t_{n-1} , t_{j} időintervallumbeli modellbeli ényszereknek ("forcing vector"). Készítsük el a

$J = \frac{1}{2} \sum \left\{ \left[\alpha_{k} - \underline{a}_{k} \right]^{T} A_{k} \left[\alpha_{k} - \underline{a}_{k} \right] + \left[\beta_{k} - \underline{b}_{k} \right]^{T} B_{k} \left[\beta_{k} - \underline{b}_{k} \right] \right\} \quad (2.23)$

szteségfüggvényt, ahol a. jelöli az állapotra vonatkoz figyeléseket és β_k a kényszerre vonatkoz Migyeléseket; a, és b, a megfelelő modell változók; A, ^a súlyozást szolgáló mátrixok. A (2.22) feltételek és

Dezső's main achievements at FSL

Dezső started his second "career" at FSL Boulder, Co. in 1991

- Intoduction of 3DVAR to NOAA hres short-range models
- Application of the community GSI statistical interpolation to regional RAP
- Development of ens-based closure scheme for deep convection parametrization (Grell-Devenyi, 2002)

The Dévényi award

- 2010: Memorial meeting: a celebration of Dezső's scientific achievements
- 2011: We, Dezső's friends and daughter created the award
- 2011-2024: it is now the 11th time the award is given to a young scientist for his/her work in the field of NWP and dynamical meteorology
- This is now the 15. anniversary of Dezső's death, so let htis meeting be a special tribute to him