
241 

IDŐJÁRÁS 

Quarterly Journal of the Hungarian Meteorological Service 

Vol. 119, No. 2, April – June, 2015, pp. 241–265 

Application of the AROME non-hydrostatic model  

at the Hungarian Meteorological Service: physical 

parameterizations and ensemble forecasting 

 

Balázs Szintai
1
*, Mihály Szűcs

1
, Roger Randriamampianina

2
,  

and László Kullmann
1
 

 
 
 

1
Hungarian Meteorological Service, 

Kitaibel Pál u. 1., H-1024 Budapest, Hungary 

 
2
Norwegian Meteorological Institute 

P.O. Box 43, Blindern, N-0313 Oslo, Norway
 

 

 

*Corresponding author E-mail:szintai.b@met.hu 

 

(Manuscript received in final form November26, 2014) 

 

 

Abstract―At the Hungarian Meteorological Service (HMS), the AROME non-

hydrostatic numerical weather prediction model has been running operationally since the 

end of 2010. The horizontal resolution is 2.5 km, thus it is assumed that deep convection 

is explicitly resolved. To achieve this, apart from increasing the horizontal and vertical 

resolution of the model, advanced physical parameterizations have to be applied. In this 

paper, some recent developments in connection with dynamics and physical 

parameterizations performed at the HMS are described. Model sensitivities related to 

horizontal diffusion, microphysics, turbulence, and shallow convection are discussed. 

Main features of the applied surface scheme “SURFEX” are highlighted as well as 

developments in connection with the prognostic treatment of vegetation. Recent work 

focusing on high resolution probabilistic forecasting with the AROME model is also 

summarized. It is shown that the AROME model is able to adequately predict severe 

weather events, however, as resolution increases, the importance of a probabilistic 

forecasting approach increases. An initial condition perturbation method and a model 

error representation scheme are described and their impact in an AROME-EPS test 

configuration is also presented. 

 

Key-words: numerical weather prediction, physical parameterization, semi-Lagrangian 

horizontal diffusion, convection permitting ensemble system 
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1. Introduction 

Thanks to the fast evolution in computing technology, more national numerical 

weather prediction centers can run models with increased resolutions. Using 

high-resolution models is very important in predicting fast-developing and 

intense atmospheric events. Good prediction of such hazardous events can 

protect lives and properties. Hence, investing in development of such models is 

very important for environmental and societal protection. 

Hungary, together with several other European countries, has been 

participating in the ALADIN (Aire Limitée Adaptation Dynamique 

Développement International) consortium since 1991. The ALADIN consortium 

was initiated by France. The aim of this consortium is to develop a short-range 

limited-area numerical weather prediction (NWP) model. As a result of this 

collaboration, the ALADIN/AROME model family has emerged and is 

constantly being developed in the participating countries.  

At the beginning of the ALADIN collaboration, the ALADIN model was a 

hydrostatic NWP model and was designed to  run at relatively coarse horizontal 

resolutions (i.e., not higher resolution than 8 km), where the hydrostatic 

approximation (vertical acceleration of air is neglected) is valid. By the 

beginning of the new millennium, it became possible to run operational non-

hydrostatic models at a horizontal resolution of 2–3 km. At Météo-France, the 

AROME (Application of Research to Operations at Mesoscale) project was 

initiated in 2002 with the aim to develop a non-hydrostatic NWP model running 

at 2.5 km horizontal resolution (Seity et al., 2011). The AROME model has 

three main components: the non-hydrostatic ALADIN dynamical core (Bubnová 

et al., 1995; Benard et al., 2010), the atmospheric physical parameterizations, 

which are taken from the French Meso-NH research model (Lafore et al., 1998), 

and the SURFEX surface model (Le Moigne et al., 2009). A mesoscale data 

assimilation system with a three-dimensional variational (3D-VAR; Fischer et 

al., 2005) scheme for the upper-air and an optimum interpolation (OI) technique 

for the surface analysis provides reliable initial condition for the AROME 

model. 

The AROME model is now used in several countries of the ALADIN and 

HIRLAM (HIgh Resolution Limited Area Model) consortia. At the Hungarian 

Meteorological Service (HMS), work related to the AROME model started in 

2006. After five years of scientific and technical development, the AROME 

model became operational in December 2010. In the beginning of the 

operational implementation, the model ran four times a day (at 00, 06, 12, and 

18 UTC) at a horizontal resolution of 2.5 km, and provided forecasts up to 

48 hours for a domain covering the Carpatian Basin (Fig. 1). The initial 

conditions were provided by the ALADIN/Hungary (Hereafter ALADIN/HU) 

limited area model (LAM) (Horányi et al., 1996), while lateral boundary 

conditions are obtained from the ECMWF/IFS (European Centre for Medium-
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Range Weather Forecasts / Integrated Forecast System) model. The 

ALADIN/HU model has its own three-dimensional variational (3DVAR) data 

assimilation system (Bölöni, 2006, Randriamampianina, 2006), which is partly 

inherited by the AROME model. The AROME assimilation system, using only 

conventional observations, was operationally implemented in March 2013 (Mile 

et al., 2014). The short-range forecasts of AROME are mainly used by the 

forecasters of HMS to produce early warnings of severe weather events. 

Furthermore, products derived from AROME are utilized by wind energy farms 

to plan their production. 

 

 

 

Fig. 1. Domain and orography of the AROME model as run operationally at the 

Hungarian Meteorological Service.  

 

 

The aim of this paper is to present recent developments of the AROME 

model performed at HMS regarding dynamics, physical parameterizations, and 

ensemble prediction. In Section 2, the dynamical core of the model is briefly 

described and developments related to horizontal diffusion are presented. In 

Section 3, an overview of the physical parameterizations applied in AROME is 

given, together with the description of certain developments related to the 

turbulence parameterization and surface processes. Section 4 presents new 

developments regarding non-hydrostatic probabilistic forecasting. Finally, 

results are summarized in Section 5. 

2. Dynamics 

At horizontal mesh sizes at or below two kilometers, vertical accelerations could 

be of the order of the gravitational acceleration (g) and cannot be neglected any 

more, thus the hydrostatic approach is not recommended. Consequently, a new 
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equation has to be carried for the vertical momentum in the non-hydrostatic 

dynamical cores. The advantage of this approach is that certain atmospheric 

phenomena (like deep convection or orographic gravity waves) are resolved 

explicitly by the model, therefore no parameterization of these processes is 

required. The AROME model uses the non-hydrostatic dynamical core which 

was developed by the ALADIN consortium (Bubnová et al., 1995). 

The application of high resolution atmospheric models is a computationally 

demanding task, due to the increased number of grid points, the additional equation 

for vertical momentum in the dynamical core, and the increased complexity of 

certain parameterization schemes (e.g., microphysics). These requirements are only 

partly compensated by the fact that the deep convection scheme could be switched 

off in the model. In the case of the AROME model, this high computational 

demand is tackled by the application of advanced and efficient numerical schemes. 

AROME is a spectral model, which means that in the dynamical part of the model, 

the prognostic equations are handled in spectral space, which enables a fast 

computation of horizontal derivatives. Regarding the time integration, a very 

efficient semi-implicit, semi-Lagrangian time integration scheme is applied in 

AROME. This scheme permits a rather long time step even at fine horizontal 

resolutions. In the current operational version at the HMS, a time step of 60 s is 

used in AROME at 2.5 km horizontal resolution. This is approximately five times 

larger than the time step applied in other widely used non-hydrostatic models. 

2.1. Horizontal diffusion 

In current mesoscale NWP models, one dimensional physical parameterizations 

are applied. The reason for this is that above 1 km horizontal resolution, vertical 

gradients of meteorological variables are much larger than the horizontal 

gradients. However, due to numerical stability constraints, it is necessary to 

ensure a horizontal communication of grid cells. Apart from advection, this can 

be realized by the application of a numerical horizontal diffusion filter operator. 

In the case of the ALADIN/AROME model family, there are two main options 

for numerical horizontal diffusion. The first one is the spectral diffusion which is 

calculated in spectral space and consequently acts on the full model domain. The 

second option is the semi-Lagrangian horizontal diffusion (SLHD, Vána et al., 

2008), which is calculated in grid point space as a function of wind deformation, 

hence it has a physically based and more local effect. It is important to note that in 

the AROME model, SLHD is used in combination with the spectral diffusion. In 

fact, next to SLHD, two other spectral diffusion operators are used: a fourth order 

spectral diffusion which acts mainly at the upper part of the model domain to 

prevent the reflection of gravity waves from the model top and a sixth order 

spectral diffusion to filter noise due to orography. 

At HMS, several experiments have been done in connection with SLHD. 

The main goal of these experiments was to tackle some known deficiencies of 
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the AROME model during convective conditions (e.g., too strong updrafts, too 

high precipitation peaks in the cells, too strong gust fronts). In the original 

configuration, SLHD is applied to all (falling and non-falling) hydrometeors. 

The experiment presented here is based on the work of Bengtsson et al. (2010). 

SLHD is applied only to non-falling hydrometeors, and additionally it is also 

applied to the dynamical fields (wind, temperature, and humidity) and turbulent 

kinetic energy (TKE). Characteristics of the fourth order spectral diffusion have 

also been changed: while in the original configuration spectral diffusion acts on 

all levels (although with increasing intensity upwards), in the experiments 

spectral diffusion was only applied above 100 hPa. Fig. 2 presents the impact of 

SLHD changes on a convective event. With the new SLHD configuration, the 

AROME simulation is closer to observations: the intensity of convective 

precipitation is reduced, convective wind gusts are weaker and the number of 

convective cells is decreasing. Apart from case studies, the new SLHD settings 

were tested on longer summer and winter periods, and the forecasts were 

compared against the surface (SYNOP) observations and radar-based 

precipitation data. Verification scores against SYNOP data show a clear 

improvement in the wind speed, wind gust, and cloudiness forecast, while the 

impact on temperature and humidity is neutral (Fig. 3). The diurnal cycle of 

convective precipitation is also improved, as the overestimation in the late 

afternoon is decreased (Fig. 4).  

 

 

 

 

Fig. 2. Forecasted fields of two AROME experiments and measurements for July 22, 2010, at 

15 UTC (+15 h forecasts). Left column: AROME with new SLHD settings, middle column: 

AROME with original SLHD settings, right column: measurements. First row: hourly 

precipitation, second row: low cloud cover, third row: hourly maximum wind gust. 
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Fig. 3. Verification scores for the period between May 1, and June 1, 2013 as a function 

of lead time (in hours). Upper panel: 10-meter wind speed, lower panel: cloudiness. 

Green line: original SLHD settings, red line: new SLHD settings. Dashed line: root mean 

square error, solid line: bias. Always the 00 UTC forecasts were verified against low-

altitude (station altitude below 400 m) SYNOP observations above sea level on the 

operational AROME domain. 

 

 

 

 

 

Fig. 4. Observed (radar) and predicted diurnal cycle of convective precipitation (area 

averaged precipitation on the AROME domain) for the period between July 17 and 

August 17, 2010. AROME experiments mentioned in the text: green: without EDKF 

parameterization and original SLHD settings; red: with EDKF parameterization and 

original SLHD settings; blue: with EDKF parameterization and new SLHD settings. 

Forecasts of the 8 km resolution limited area regional model run at the Hungarian 

Meteorological Service with two different physical parameterizations (ALADIN and 

ALARO) and of the ECMWF model are also indicated.  
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3. Physical parameterizations 

Numerical weather prediction models are not able to resolve explicitly those 

processes which are smaller than the grid scale of the model, thus these 

processes have to be parameterized. Parameterization means the description of 

the overall effect of a given subgrid scale process on the grid scale values, using 

the given grid scale variables. The AROME model uses the physical 

parameterizations of the Meso-NH French research model. In the following, an 

overview is given on the components of this physical parameterization package, 

and the corresponding developments performed at HMS are described. 

3.1. Microphysics 

Phase changes occurring in clouds are described by the microphysical 

parameterization. In convection permitting NWP models, the choice of the 

microphysical scheme is of great importance. As these models do not apply a 

deep convection parameterization, the convective cloud should explicitly be 

simulated by the model, and thus the non-hydrostatic dynamical core and the 

microphysical parameterization play a crucial role. Consequently, the 

microphysical scheme has to be rather sophisticated to be able to simulate all the 

relevant processes during a lifetime of a convective cloud.  

In AROME, the so-called ICE3 scheme (Pinty and Jabouille, 1998) is used, 

which carries six prognostic microphysical variables (vapor, cloud water, cloud 

ice, rain, snow, graupel), and describes the phase change processes among these 

variables. In the AROME model this means 35 processes: warm-cloud and 

mixed-phase processes are distinguished. Warm-cloud processes are 

autoconversion, accretion, evaporation, sedimentation, while mixed-phase 

processes are nucleation, ice-crystal autoconversion, aggregation, raindrop 

contact freezing, riming, melting, deposition, Bergeron-Findeisen effect, and 

ice-crystal sedimentation. The ICE3 scheme is a bulk one-moment scheme. This 

means that the mixing ratio of each hydrometeor is written as the third 

momentum of the size distribution of the given hydrometeor. The advantage of 

this approach is that the microphysical processes become analytically resolved 

processes. It has to be noted that a new two-moment microphysical scheme is 

currently under development in Meso-NH and is planned to be available in 

AROME soon. Next to the mixing ratios, this scheme handles the number 

concentration of hydrometeors prognostically as well. 

Several tests were performed in connection with the initialization of the 

hydrometeor fields in the microphysics parameterization at the Hungarian 

Meteorological Service. The problem regarding hydrometeors is that these 

variables are not measured regularly, thus it is not possible to initialize these 

model fields based on measurements in an operational setting. In the early years 

of AROME development, it was considered that the formation of hydrometeors 
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is a relatively fast process, and consequently, it is possible to initialize these 

fields with zero. It was assumed that if the initial temperature and humidity 

fields are correct, then the hydrometeors would form within a couple of time 

steps. As a contrary to this assumption, case studies showed that if the 

hydrometeors are initialized with zero, then precipitation events could be missed 

by AROME in the early hours of the forecast. To overcome this problem, the 

following procedure was applied: the hydrometeors are “cycled” from the 

previous run, so, e.g., the initial hydrometeor fields of an AROME forecast 

starting at 06 UTC are the +6 h forecasted hydrometeor fields of the 00 UTC 

AROME forecast. With this approach, several previously missed precipitation 

objects could be well simulated by AROME (Fig. 5).  

 

 

 

Fig. 5. Impact of hydrometeor initialization on the AROME forecast. Left: hydrometeors 

are initialized with zero; middle: hydrometeors are initialized from the 6 hour forecast of 

the previous run; right: hourly accumulated radar precipitation. A +6 h forecast of hourly 

precipitation is shown valid for 12 UTC, May 27, 2007.  

3.2. Turbulence and shallow convection 

Shallow convection refers to the warm updrafts (thermals) which originate from 

the surface and reach the top of the planetary boundary layer (PBL). These 

thermals are usually indicated by small non-precipitating clouds (Cumulus 

humilis). Boundary layer turbulence refers to those eddies which are generated 

either by wind shear (mechanical turbulence generation) or buoyancy, with a 

characteristic size much smaller than the depth of the PBL. Until recently, 

shallow convection was parameterized separately from boundary layer 

turbulence in NWP models, however, nowadays these two processes are handled 

in a unified way in several schemes. 
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In the AROME model, the eddy diffusivity – mass flux (EDMF) approach 

is followed to parameterize turbulence and shallow convection. The eddy 

diffusivity part of the parameterization uses the CBR scheme (Cuxart et al., 

2000) to describe the effect of boundary layer turbulence. This is a 1.5 order 

closure which carries a prognostic equation for the turbulent kinetic energy. The 

diffusion coefficients are then calculated based on TKE, a turbulent length scale 

and stability functions. In the AROME model, the length scale formulation after 

Bougeault and Lacarrere (1989) is applied. Originally, the CBR scheme has 

both one and three dimensional versions, however, currently the one 

dimensional version is applied in AROME. Based on recent experiments, it is 

assumed that a three dimensional turbulence scheme is not necessary above 

1 km horizontal resolution (Yann Seity and Rachel Honnert, personal 

communication). The main drawback of the CBR scheme is that it is a local 

scheme, which means that turbulent fluxes at a given vertical level are 

determined by the local vertical gradients of wind and temperature at that level. 

Consequently, with a local turbulence scheme, it is not possible to reproduce the 

correct behavior of the convective boundary layer, which has a strong non-local 

nature: thermals originating at the surface result in considerable vertical 

transport in the middle part of the PBL, where the local vertical gradients are 

very close to zero. To resolve this problem, in the EDMF framework a mass flux 

parameterization is applied next to the CBR scheme. 

In the AROME model, the mass flux parameterization of a shallow 

convection thermal is divided to two parts (Pergaud et al., 2009). On vertical 

levels below the shallow convective cloud base, the parameterization of Lappen 

and Randall (2001) is used. This scheme is closed with the surface sensible heat 

flux, consequently, the entire mass flux part of the EDMF parameterization is 

inactive if the surface sensible heat flux is negative (stable conditions). Above 

the cloud base, the Kain and Fritsch (1990) parameterization is applied (this is 

why the EDMF parameterization is mentioned as EDKF in connection with the 

AROME model). The closure of this scheme is performed by taking the mass 

flux at cloud base from the parameterization of the non-cloudy part of the 

thermal. The cloudy part uses a diagnostic cloud scheme where the cloud 

fraction at a given level is proportional to the area fraction of the updraft.  

At the Hungarian Meteorological Service, the impact of the EDKF 

parameterization on the overall performance of the AROME model has been 

investigated before the operational introduction of the scheme. As the scheme is 

only active during unstable conditions, largest impact was expected for summer 

convective events. Fig. 6 shows the impact of EDKF on a summer convective 

case. Here, two AROME simulations are compared; one with EDKF, and a 

second one which parameterized turbulence and shallow convection separately 

(with the CBR and Kain-Fritsch schemes, respectively). The run without EDKF 

significantly overestimates the number of convective cells during early 

afternoon, while during the evening it fails to simulate the heavy thunderstorms 
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(not shown here). Also, convection itself is initiated too early (around 8 UTC) in 

this experiment (see also in Fig. 4), and consequently, convective wind gusts are 

overestimated until the early afternoon hours.  

 

 

 

Fig. 6. Same AROME forecast of hourly precipitation, low clouds and wind gusts as in 

Fig. 2, but the EDKF parameterization is switched off, thus turbulence and shallow 

convection is parameterized separately (CBR scheme for turbulence and Kain-Fritsch 

scheme for shallow convection). Colour scales are the same as in Fig. 2. 

 

3.3. Surface 

Surface processes are calculated using the SURFEX (SURFace EXternalisée, Le 

Moigne, 2012) platform.  

SURFEX uses the tiling approach: each grid point is divided into 

4 different surface types (tiles): sea, inland water, town, and vegetated land. 

Each tile uses the same atmospheric forcing (air temperature, humidity, wind 

speed, long and shortwave radiation, pressure, precipitation), but the 

parameterizations are different and independent of each other. The resulting 

surface fluxes (momentum, sensible- and latent heat) are averaged according to 

the area fraction of the tiles and returned to the atmosphere. Surface parameters 

are determined by physiographic databases: GTOPO30 for orography, 

ECOCLIMAP for surface covers, and FAO for soil texture. 

In the current operational version, over sea and inland water (lakes) 

SURFEX uses simple schemes: surface temperatures are kept constant, 

roughness length and fluxes are computed with the Charnock's approach. 

However, there is a more advanced scheme for lakes, FLAKE (Freshwater lake, 

Mironov et al., 2010), in which lake temperature is a prognostic variable. 
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Over artificial surfaces, the TEB scheme (Town Energy Budget, Masson, 

2000) is used. Towns are represented by the canyon concept: there is a single 

road with two buildings and a canyon between them. Each surface (road, wall, 

roof) consists of 3 layers and has a different temperature , while the temperature 

inside the buildingsis constant. The time evolution of the temperatures are 

calculated by heat conduction equations. In the radiative forcing, trapping and 

shadowing effects are also taken into account. The scheme also accounts for 

anthropogenic heat and water fluxes (traffic and industry). 

Vegetated land surfaces are parameterized with the ISBA scheme (Noilhan 

and Planton, 1989; Noilhan and Mahfouf, 1996). The current operational version 

uses a 3-layer (surface, root zone, and deep soil) force-restore scheme. Over 

snow mantel, a one layer snow scheme (Douville et al. 1995) is used in which 

snow albedo and density are prognostic variables.  

The 2 m temperature and 10 m wind are calculated by the Canopy scheme 

(Masson and Seity, 2009) ,which is a one dimensional vertical turbulence 

scheme in the surface boundary layer. 

Vegetation is constant and determined from climatology databases. 

However, a more advanced version of the ISBA scheme, called ISBA-A-gs 

(Calvet et al. 1998), uses a simplified photosynthesis model which is able to 

describe the evolution of vegetation. In this model version, biomass is a 

prognostic variable. Growing of the active biomass is due to assimilation of CO2 

(photosynthesis), while the decline (or mortality) can be due to soil moisture 

stress, senescence, or transport of organic molecules from active biomass to 

structural one. Since the photosynthesis process depends on the vegetation type, 

the vegetated land tile in SURFEX is further divided into 12 patches according 

to the vegetation or surface type, like grass, crops, trees, etc. Beside the 

prognostic treatment of the vegetation, the scheme also calculates the carbon 

fluxes (assimilation and soil respiration). 

In the framework of the Geoland2 EU-FP7 project, the task of the 

Hungarian Meteorological Service was to simulate the natural carbon fluxes and 

the evolution of vegetation over Hungary. SURFEX was used in offline mode 

(no influence on the atmosphere) with the ISBA-A-gs photosynthesis model. To 

improve the accuracy of the initial soil moisture and biomass fields, assimilation 

of satellite observations (surface wetness index and leaf area index) was 

developed and used. Results have shown that the model is able to describe the 

seasonal cycle of the vegetation and the natural carbon fluxes, and that 

assimilation of the above mentioned satellite observations (SWI and LAI) gives 

some improvement in spring (Fig. 7). 

The Hungarian Meteorological Service also takes part in the IMAGINES 

EU-FP7 project. Our task – besides the simulation of vegetation and carbon 

fluxes – is the development of the model to be able to assimilate surface albedo 

from new generation Proba-V satellite observations and to calculate agricultural 

indicators like drought indices. 
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Fig. 7. Simulated and measured carbon flux (up) and leaf area index, LAI (down). Black 

line is observation, red line is without and green line is with assimilation. 

 

 

3.4. General performance of the AROME model 

As a result of the developments described in the previous sections, the AROME 
model has become a robust and reliable operational NWP model at HMS. The 
quality of AROME forecasts is comparable to that of other operational models 
used at HMS. In this section we show verification scores of a longer period, 
where the performance of AROME is compared to two operational hydrostatic 
models: the IFS global model run at ECMWF at 16 km horizontal resolution and 
the ALADIN regional model run at HMS at 8 km resolution.  

The time period for the comparison was chosen in a way that no major 
changes should be applied in any of the three models. According to this criteria 
the period between September 16, 2013 and July 2, 2014 was selected. In this 
period, AROME was running with the model cycle 36, and the 3DVAR data 
assimilation system was operational using conventional upper air observations. 



253 

In the following, verification scores for screen and surface level variables (using 
SYNOP stations) as well as upper level variables (using radiosounding stations) 
are presented. Only forecasts with 00 UTC initial time were verified, and the 
verification scores were investigated as a function of lead time. 

Regarding temperature and dew point at 2 meters, performance of AROME 

is comparable with the ECMWF model, while these two models outperform the 

ALADIN model for these variables (Figs. 8a and 8b). The model bias has a 

diurnal dependency, daytime temperatures are underestimated, while nighttime 

temperatures are overestimated in AROME. Wind speed and wind gusts at 

10 meters are generally overestimated by all three models (Figs. 9a and 9b). For 

wind speed, ECMWF gives the best forecasts followed by AROME and 

ALADIN. Wind gusts are best captured by AROME, while ALADIN and 

ECMWF have similar performance for this variable.  

 

 

 

 

 

 

 

Fig. 8. Verification scores as a function of forecast lead time for temperature (a) and dew 

point (b) at 2 meters for operational NWP models at HMS between  September 16, 2013 

and July 2, 2014. Red: AROME, green: ALADIN, blue: IFS; dashed line: root mean 

square error, solid line: bias.  
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High resolution non-hydrostatic models are mainly applied for the 

forecasting of severe weather events, thus it is important to assess the quality of 

forecast performance for heavy precipitation. Fig. 10 presents the symmetric 

extremal dependence index (SEDI), which is often used to verify high threshold 

events and the frequency bias for forecasted 12 hourly precipitation amounts. The 

SEDI score shows that for higher thresholds, the AROME model gives the best 

precipitation forecasts out of the three operational models. However, the 

frequency bias score points out a serious problem of AROME, namely that the 

model tends to forecast intensive convective cells more often than in reality. This 

erroneous model behavior is currently investigated at HMS. 

Model performance at upper levels is mainly important for aviation 

forecasting. Based on the investigation of geopotential, temperature, wind, and 

humidity at several vertical levels, it can be concluded that the three models 

have similar performance, and the AROME model has usually a low bias but 

somewhat higher RMSE scores than the other two models (Figs. 11a and 11b). 

 

 
 

 

 

 

 

Fig. 9. Same as Fig. 8 but for wind speed (a) and wind gusts (b) at 10 meters. 
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Fig. 10. Verification scores for 12 hourly accumulated precipitation for operational NWP 

models at HMS between September 16, 2013 and July 2, 2014. Red: AROME, green: 

ALADIN, blue: IFS; dashed line: SEDI, solid line: frequency bias. 

 

 

 

 

 

 

Fig. 11. Same as Fig. 8 but for temperature at 850 hPa (a) and wind speed at 925 hPa (b). 
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4. Ensemble prediction system with AROME model 

4.1. Motivation for a convection-permitting EPS 

The uncertainty of numerical weather predictions is usually thought to originate 

from two main sources (Palmer and Tibaldi, 1988): 

– Initial condition (IC) errors which evolve with time in the models due to the 

chaotic nature of the non-linear atmospheric system; 

– Model errors which are based on limited human knowledge about atmospheric 

processes and finite resolution and representation possibilities of our models. 

In reality, these errors can not be absolutely separated and they evolve together 

with time in the numerical models. Instead of giving a single-value as a forecast 

of a meteorological variable, it is more correct to give a probability density 

function (PDF) of it which contains information about forecast uncertainty. 

Until now, ensemble prediction systems (EPS) have been the only feasible and 

widely used tools to estimate such PDF. The main idea behind EPS is to run not 

only a single-forecast but an ensemble of numerical integrations where members 

can differ from each other in various aspects. These differences are defined by 

the perturbation generation methods which are designed to address different 

sources of error, so basically IC perturbation methods and model error 

representation can be separated. 

The first ensemble prediction systems (EPS) were implemented in the early 

90's with global models of ECMWF and NCEP (Buizza et al., 1993; Toth and 

Kalnay, 1997). These global systems described synoptic-scale motions on 

medium-range. Consequently, their error is dominated by the chaotic growth of 

IC error, and that is why early methods focused on IC perturbations (singular 

vector and breeding methods). Later it was realized that classic methods can not 

always ensure sufficient spread at the early stage of the forecast, so new 

methods were implemented, which aim is usually to identify the most uncertain 

parts of analysis fields where bigger initial spread is needed. One possible way 

is to run an ensemble of data assimilation cycles (EDA) with perturbed 

observations. This method has been successfully used for example in ECMWF's 

EPS or in Meteo-France's global ensemble, called PEARP (Desroziers et al., 

2009; Vié et al., 2011). 

In the improving ensemble systems, it was recognized that the 

representation of model error is also a very important challenge, so the 

perturbation of the model formulations is also necessary. Generally, it is 

assumed that model physics is more uncertain than dynamics because of the 

fluctuation of sub-grid scale processes and the bigger error of the 

parametrization methods. For that purpose, ensemble members can run with 

different parametrization schemes (multi-physics approach, used e.g., in 

PEARP) or with slightly different parameter settings in physics (parameter 
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perturbations). Another possible way of representing model error is the 

stochastic perturbation of the total tendencies coming from the physics. Such a 

method is the so-called stochastically perturbed parameterized tendencies 

(SPPT) which was first implemented at ECMWF (Buizza et.al., 1999). 

Limited area ensemble prediction systems (LAMEPS) have become also 

popular tools to refine global probabilistic forecasts on a shorter time range and 

for a smaller domain. LAMEPS have to be coupled to global EPS, which results 

in some additional challenges. Global perturbations have to be taken into 

account through the interpolated lateral boundary conditions (LBC) of the 

perturbed members. The potential benefit of LAMEPS motivated the HMS to 

start its own researches on that field and established an operational system in 

2008. This EPS uses the hydrostatic ALADIN model and runs with 8 km 

horizontal resolution. It has 11 members which are the simple dynamical 

downscaling of the control and the first 10 perturbed members of the 18 UTC 

run of the Prevision Ensemble ARPege (PEARP). While no local perturbation or 

data assimilation have been implemented yet, its quality depends highly on 

PEARP, and the impact of the changes in global system can be also measured in 

the LAMEPS. The slightly positive impact of a simple EDA implementation 

was shown, where only near-surface observations were perturbed in an 

ensemble of surface optimal interpolations (Horanyi et al., 2011). 

The quality of numerical weather prediction has been improving for the 

previous decades because of the better model formulations and the finer 

resolution which was enabled by the growing computer capacity. As it has been 

already mentioned in Section 2, at around 2 km resolution, models become non-

hydrostatic and they can resolve such small-scale phenomena like deep 

convection. This way, finer structures can be produced and more realistic fields 

can appear. Unfortunately, this type of improvement is not necessarily associated 

with better scores, because resolving smaller scales can cause more uncertainty in 

model results (e.g., localization problems can lead to double-penalty effect). To 

overcome this problem, more and more national meteorological services in 

Europe started to develop non-hydrostatic model based ensemble systems. This 

new generation of EPS is also referred to as convection-permitting EPS. The 

introduction of such systems has already happened at Deutscher Wetterdienst 

(DWD) with COSMO-DE which has 20 members and runs with 2.8 km 

resolution (Gebhardt et.al., 2008). Met Office has also started its operational 

convection-permitting EPS based on the 1.5 km resolution version of Unified 

Model (Migliorini et.al., 2011). Météo-France has also joined the bigger services 

and runs its 12-member EPS with AROME model (Vié et al., 2011). 

HMS started its own research around convection-permitting EPS in 2012, 

and many tests have been run since then. Some of the results will be presented in 

this chapter. In this paper, an 11-member test configuration is called as a 

reference, which is, similarly to the operational LAMEPS, the simple dynamical 

downscaling of the first 11 PEARP member. AROME model runs with very 
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similar settings to what was detailed in previous parts for single-forecasts. The 

only notable difference was that the SLHD settings were not changed (cf. Section 

2.1). In the following parts, the impact of two perturbation methods will be 

presented, which have been already mentioned as successfully used approaches in 

global EPS. The EDA method is addressed to IC error (see Section 4.2), while the 

SPPT method represents the model error (see Section 4.3). 

4.2. Impact of Ensemble Data Assimilation Method 

Modern data assimilation methods are based on complex algorithms which 

usually combine model forecasts as background fields and different types of 

observations. Similarly to the atmospheric models, these algorithms also have 

their limitations, while background fields and observations are also sources of 

additional errors. As a result of the above mentioned weaknesses, it has to be 

admitted that analysis fields are imperfect. A plausible way for handling this 

imperfection is to define the most uncertain areas of the analysis, which is 

possible with generating not only a single analysis field but running an ensemble 

of data assimilation cycles. This ensemble can provide flow dependent 

information about the accuracy of the background fields which is very useful to 

the data assimilation itself (Brousseau et al., 2006; Desroziers et al., 2009). 

From the aspect of an ensemble, it is even more important that more analysis 

fields are generated in EDA which can be the initial conditions of different 

ensemble members in an EPS.  

The differences between the members of EDA originate usually from the 

perturbations which are added to the observations: 

 

 y' j=y+σ (y)r j  (1) 
 

where it is assumed that observations y are imperfect but they are not 

biased and their uncertainty can be described by σ, which is estimation of the 

accuracy of the instrument. There is an r random number for the jth member, 

picked from a Gaussian-distribution, which has 0 mean, unit variance, and 

bounded in a [–3;3] interval. Observation perturbations can evolve in 

assimilation cycles, so in new steps there are always uncertainty information in 

the system which comes from the background fields. Additionally, LBCs are 

needed in LAM EDA during the model integration when background fields are 

generated. These LBCs are usually interpolated from different members of a 

global EPS, so they can be also sources of perturbations inside an EDA 

system.An EDA was implemented to construct better perturbed initial conditions 

for our test AROME-EPS compared to those  obtained by simple downscaling of 

the  global EPS. In this implementation of EDA (very similar to the EPS itself), 

different members were coupled to the different members of PEARP. The data 

assimilation methods are very similar to the operational AROME system of 
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HMS (Mile et al., 2014). Conventional data (SYNOP, radiosonde, aircraft 

measurements) were used in a 3D-VAR data assimilation which generated 

atmospheric fields. Surface fields were simply interpolated from HMS's 

operational ALADIN model, where an optimal interpolation method is used to 

improve surface variables with observations. 

In comparison with the reference, it is expected from the EDA based 

configuration that the quality of all members can be improved simply because of 

the positive impact of data assimilation itself. It is also expected that additional 

perturbations can increase the spread of the system. These two effects can result in 

a better relationship between the root mean square error (RMSE) of the ensemble 

mean and the system's spread. These expectations are verified on spread-skill 

relationship plots (Figs. 12a, 12b, 12c, 12d), where RMSE is smaller and spread is 

bigger in the early stage of the forecast. Later the difference between reference and 

EDA based version are smaller, because on such a small domain, the effect of 

LBC's become dominant quite fast. For total cloudiness scores, Fig. 12c underlines 

another advantage of EDA which is valid in AROME-EPS framework: 

hydrometeors can be initialized from background, which importance have been 

already mentioned in Section 3.1. In this paper, mainly near-surface scores are 

presented because of the big number and high frequency of independent SYNOP 

observations (Figs. 12a. 12b, 12c). ECMWF analysis was chosen as a reference for 

upper-air verification (Fig. 12d). It has to be noted that the remarkable resolution 

difference between AROME model (2.5 km) and reference analysis (16 km) can be 

questionable. Unfortunately, the short test period and the small domain resulted a 

very limited number of radiosonde measurements, what has not permitted to 

calculate atmospheric scores on higher level with observations. 

 

 

Fig. 12
 
a. Spread-skill relationship of 2 meter temperature. Red is a simple PEARP 

downscaling as a reference; blue and green are the test versions where IC is generated in 

an EDA system. Scores are calculated for the period between December 26, 2011 and 

January 8, 2012. 

a) 
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Fig. 12
 
b-d. Spread-skill relationship of 10 meter wind gust values (b), and total 

cloudiness (c), temperature on 850hPa pressure level Red is a simple PEARP 

downscaling as a reference; blue and green are the test versions where IC is generated in 

an EDA system. Scores are calculated for the period between December 26, 2011 and 

January 8, 2012. 

a) 

d) 

b) 

c) 
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4.3. Impact of Stochastically Perturbed Parametrized Tendencies 

The original version of Stochastically Perturbed Parameterized Tendencies 

(SPPT) scheme was developed at ECMWF and called just as stochastic physics 

or BMP (Buizza et al., 1999). Later it has been revised (Palmer et al., 2009) and 

used as a successful tool to increase ensemble spread during the whole range of 

the forecast. It had positive impact even on the quality of single-model runs, 

especially in the tropical region.The concept can be expressed by the following 

equation: 

 

 e
j
(T )=∫ {A(e j ;t)+P' (e j ;t)}dt , (2) 

 

where e is the model state of the jth member at time T, which can be simply 

evolved from the integration of two processes: A is the contribution of the 

resolved scales (model dynamics) and P is the total tendency coming from the 

parametrized processes (model physics). While model physics is assumed to be 

a more uncertain part, in SPPT (as  in other methods representing model error ), 

this term is perturbed and P' is calculated from the original P : 

 

 P' (e j ;t)= (1+αr j)P j(e j ;t) , (3) 

 

where r is random number. 

In the revised SPPT scheme, a spectral pattern generator is introduced, 

which provide horizontally smooth fields of r. Its horizontal structure is defined 

by an L horizontal correlation length parameter. The scheme has been 

implemented in AROME model (Bouttier et al., 2012), where r is represented 

by biFourier functions and r' spectral coefficients are defined as first order auto-

regressive processes: 

 

 (r' )mn (t+Δt)=Φ (r' )mn (t )+σn μnm(t ) , (4) 

 

where σ sets the size of the perturbation and μ is a random number picked from a 

Gaussian-distribution, which has 0 mean, 1 variance, bounded in interval [–2;2], 

and it is a white process in time. The correlation between time-steps is 

determined via a τ decorrelation time parameter: 

 

 Φ=exp (− Δt /τ ) . (5) 

 

In Eq. (4) α is an attitude dependent number which varies on [0;1] interval 

and it has 0 value at the highest and the lowest model levels because of 

numerical stability reasons, and it is set to 1 in middle-troposphere. 

In our AROME-EPS tests, SPPT was active in the case of perturbed 

members and inactive in the case of the control forecast. σ=0.5 and τ=2 hours 
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settings were used and two different L parameters were applied: in the so-called 

'SpptLong' test L=500 km and in the so-called 'SpptShort' test L=125 km. As it 

was in EDA related experiments, simple dynamical downscaling of PEARP is 

referred to as reference forecast. The impact of SPPT scheme is represented also 

via spread-skill relationship. This impact was found quite limited in this 

research: neither the RMSE of the ensemble mean has improved, nor the spread 

of the ensemble members has increased for the examined variables (Fig. 13a). 

The most sensitive parameter was the total cloudiness, but unfortunately, some 

model quality degradation in connection with the growth of the system's spread 

(Fig. 13b) was observed.Further examination is needed for better understanding 

of this limited impact. More tests are needed on summer periods, when a 'more 

active' atmosphere is expected to behave differently. The importance of control 

parameters (σ, τ, and L) also needs some additional clarification in our AROME 

model. 

 

 
Fig. 13. Spread-skill relationship of 2 meter temperature (a) and total cloudiness (b). Red 

is a simple PEARP downscaling as a reference; blue and green are the test versions where 

SPPT scheme has been activated. Scores are calculated for the period between December 

26, 2011 and January 8, 2012. 
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5. Summary and conclusions 

In this paper, the AROME non-hydrostatic numerical weather prediction model 

as implemented at the Hungarian Meteorological Service was described with a 

focus on physical parameterizations and ensemble prediction. It was shown that 

high resolution NWP models are capable of predicting severe weather events. 

To achieve this, apart from increasing the horizontal and vertical resolution of 

the model, a non-hydrostatic dynamical core and advanced physical 

parameterizations have to be applied.  

In connection with the dynamical core, aspects of horizontal diffusion in 

AROME were discussed. Recent developments regarding the semi Lagrangian 

horizontal diffusion scheme (SLHD) were described. It was shown that if SLHD 

is applied to all dynamical fields and not to falling hydrometeors then model 

performance – especially convective precipitation and wind gusts – could be 

improved. 

The AROME model uses a state-of-the-art physical parameterization 

package, which was originally developed for the Meso-NH French research 

model. In this paper, some recent developments in connection with physical 

parameterizations performed at the Hungarian Meteorological Service were 

described. Regarding microphysics, the importance of the correct initialization of 

hydrometeor fields was highlighted. In connection with turbulence and shallow 

convection, the main ideas behind the eddy diffusivity – mass flux (EDMF) 

approach were discussed, and the positive impact of this parameterization on the 

resolved deep convection in the AROME model was shown. As the horizontal 

resolution of NWP models increases, surface processes are getting more and more 

important. In AROME, the SURFEX externalized surface model is utilized. Basic 

features of SURFEX were summarized as well as a recent development in 

connection with the prognostic treatment of vegetation.  

To conclude the description of the deterministic AROME model, some 

verification scores were presented both for surface variables and upper levels. 

The performance of AROME was compared to other operational NWP models 

used at HMS. It was found that AROME has good performance for those 

meteorological variables (wind gusts and high precipitation amounts) which are 

linked to severe weather events. 

As the horizontal resolution of NWP models is increasing, models are getting 

able to resolve even finer scales atmospheric phenomena. However, this not 

necessarily lead to better forecasts if forecast skill is measured locally (which is the 

case for most model applications). This is mainly related to localization problems 

in space and time. The application of the probabilistic approach could be a path to 

overcome this problem and handle the chaotic error growth in the model. In this 

paper, certain aspects of convection-permitting ensemble forecasts were 

highlighted and their impact was demonstrated using ensemble forecasts based on 

the AROME model. First, the ensemble data assimilation (EDA) method was 
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described, which aims at the correct determination of perturbed initial conditions 

for ensemble members. Secondly, one possible solution for the representation of 

model errors, namely, the stochastically perturbed parametrized tendencies (SPPT) 

approach was described. Based on the experiments performed with the AROME-

EPS, it can be concluded that the EDA approach could significantly improve the 

high resolution ensemble forecasts, while the SPPT scheme has limited impact in 

its current configuration. 

 

Acknowledgements: Useful discussions in the framework of the COST ES0905 project ('Basic 

concepts for convection parameterization in weather forecast and climate models') which contributed 

to the sections about dynamics and physics are greatly acknowledged. The authors are thankful to 

Filip Vana and Lisa Bengtsson for discussions about the SLHD scheme. The work about prognostic 

vegetation with the SURFEX model was carried out in the frameworks of the Geoland2 and ImagineS 

EU FP7 projects. AROME-EPS related tests were realized in the framework of an ECMWF's special 

project, called 'Continental winter weather prediction with the AROME ensemble prediction system', 

where HMS participate together with Météo France. We are really grateful to the project partners, and 

personally to Francois Bouttier. Remarks of the anonymous reviewer which lead to an improvement 

of the manuscript are greatly acknowledged. 

References 

Benard, P., Vivoda, J., Masek, J., Smolikova, P., Yessad, K., Smith, C., Brozkova , R., and Geleyn, J.-

F., 2010: Dynamical kernel of the Aladin-NH spectral limited-area model: Revised formulation 

and sensitivity experiments. Q. J. Roy. Meteor. Soc., 136, 155–169. 

Bengtsson, L., Tijm, S., Váňa, F., and Svensson, G., 2012: Impact of Flow-Dependent Horizontal 

Diffusion on Resolved Convection in AROME. J. Appl. Meteor. Climatol. 51, 54–67. 

Bougeault, P. and Lacarrere, P., 1989: Parameterization of orography-induced turbulence in a meso-

beta-scale model. Mon. Weather Rev. 117, 1870–1888. 
Bouttier, F., Vié, B., Nuissier, O., and Raynaud, L., 2012: Impact of Stochastic Physics in a Convection-

Permitting Ensemble. Mon. Weather Rev., 140, 3706–3721. 
Bölöni, G., 2006: Development of a variational data assimilation system for a limited area model at the 

Hungarian Meteorological Service. Időjárás 110, 309–327. 
Brousseau, P., Berre, L., Bouttier, F., and Desroziers, G., 2011: Background-error covariances for a 

convective scale data-assimilation system: Arome-France 3D-Var. Q. J. Roy. Meteor. Soc. 137, 
409–422. 

Bubnová, R., Hello, G., Bénard, P., and Geleyn, J.-F., 1995: Integration of the fully elastic equations 

cast in the hydrostatic pressure terrain-following in the framework of the ARPEGE/ALADIN 

NWP system. Mon. Weather Rev. 123, 515–535. 

Buizza, R., Tribbia, J., Molteni, F., and Palmer, T., 1993: Computation of optimal unstable structures 

for a numerical weather prediction model. Tellus 45A, 388–407. 
Buizza, R.,. Miller, M., and Palmer, T.N., 1999: Stochastic representation of model uncertainties in the 

ECMWF Ensemble Prediction System, Q. J. Roy. Meteorol. Soc. 125, 2887–2908. 
Calvet, J.C., Noilhan, J., Roujean, J.L., Bessemoulin, P., Cabelguenne, M., Olioso, A., and Wigneron, 

J.P., 1998: An interactive vegetation svat model tested against data from six contrasting sites. 

Agr. Forest Meteorol. 92, 73–95. 

Cuxart, J., Bougeault, P., and Redelsberger, J.-L., 2000: A turbulence scheme allowing for mesoscale 

and large-eddy simulations. Q. J. Roy. Meteor. Soc. 126, 1–30. 
Desroziers, G., Berre, L., Chabot, V., and Chapnik, B., 2009: A posteriori diagnostics in an ensemble 

of perturbed analyses. Mon. Weather Rev. 137, 3420–3436 
Douville, H., Royer, J.-F., and Mahfouf, J.-F., 1995: A new snow parameterization for the French 

community climate model. Part I: Validation in stand-alone experiments, Clim. Dynam., 12, 21–35. 
Fischer, C., Montmerle, T., Berre, L., Auger, L., and Stefanescu, S.E., 2005: An overview of the variational 



265 

assimilation in the Aladin/FranceNWP system. Q. J. Roy. Meteor. Soc. 131, 3477–3492. 
Gebhardt, C., Theis, S., Krahe, P. and Renner, V., 2008: Experimental ensemble forecasts of 

precipitation based on a convection-resolving model. Atmos. Sci. Lett. 9, 67–72. 

Horányi A., Ihász I. and Radnóti G., 1996: ARPEGE/ALADIN: A numerical weather prediction model 

for Central-Europe with the participation of the HMS. Időjárás 100, 277–301. 

Horányi A., Mile M., and Szűcs M., 2011: Latest developments around the ALADIN operational short-

range ensemble prediction system in Hungary, Tellus 63A, 642–651. 

Kain, J.S., and Fritsch, J.M., 1990: A one-dimensional entraining/detraining plume model and its 

application in convective parameterizations. J. Atmos. Sci. 47, 2784–2802. 

Lafore, J.-P., Stein, J., Asencio, N.,  Bougeault, P.,  Ducrocq, V.,  Duron, J., Fischer, C., Héreil, P.,  

Mascart, P., Masson, V., Pinty, J. P. , Redelsperger, J. L. , Richard, E. and Vilà-Guerau de 

Arellano J.,, 1998: The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation 

and control simulations. Ann. Geophys., 16, 90–109. 

Lappen, C.L. and Randall, D. A., 2001: Toward a unified parameterization of the boundary layer and moist 

convection, Part 2: lateral mass exchanges and subplume-scale fluxes. J. Atmos. Sci. 58, 2037–2051. 

Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models, 

Bound.-Lay. Meteorol. 94, 357–397. 

Masson, V. and Seity, Y., 2009: Including atmospheric layers in vegetation and urban offline surface 

schemes, J. Appl. Meteorol. Clim. 48, 1377–1397. 
Migliorini, S., Dixon, M., Bannister, R., and Ballard, S., 2011: Ensemble prediction for nowcasting 

with a convection-permitting model. I: Description of the system and the impact of radar-
derived surface precipitation rates. Tellus 63A, 468–496. 

Mile, M., Bölöni, G., Randriamampianina, R., Steib, R., and Kucukkaraca, E., 2015: Overview of 

mesoscale data assimilation developments at the Hungarian Meteorological Service. Időjárás 

119, 215–239. 

Mironov, D., Heise, E., Kourzeneva, E., Ritter, B., Schneider, N., and Terzhevik, A., 2010: 

Implementation of the lake parameterisation scheme flake into the numerical weather prediction 

model COSMO. Boreal Env. Res. 15, 218–230. 

Le Moigne, P., 2012: SURFEX scientific documentation. Note de centre du Groupe de Météorologie a 

Moyenne Echelle, 87, Météo-France, CNRM, Toulouse, France, on-line available at: 

http://www.cnrm.meteo.fr/surfex/ 

Noilhan, J., and Planton, S., 1989: A simple parameterization of land surface processes for 

meteorological models, Mon. Weather Rev. 117, 536–549. 

Noilhan, J., and Mahfouf, J.-F., 1996: The ISBA land parameterization scheme, Global Planet. 

Change 13, 145–159. 

Pergaud, J., Masson, V., Malardel, S., and Couvreux, F.,2009: A parameterization of dry thermals and 

shallow cumuli for mesoscale numerical weather prediction, Bound.-Lay. Meteor., 132, 83–106. 

Randriamampianina, R., 2006: Impact of high resolution observations in the ALADIN/HU model, 

Időjárás 110, 329–349. 
Palmer, T.N., and Tibaldi, S., 1988: On the prediction of forecast skill, Mon. Weather Rev. 166, 245. 
Palmer, T., Buizza, R., Doblas-Reyes, F., Jung, T., Leutbecher, M., Shutts, G., Steinheimer, M., and 

Weisheimer, A., 2009: Stochastic parametrization and model uncertainty. Tech. Rep., ECMWF 
Tech. Memo. 598. Available online at http://www.ecmwf.int/publications/. 

Pinty, J.-P., and Jabouille, P., 1998: A mixed-phased cloud parameterization for use in a mesoscale 
non-hydrostatic model: Simulations of a squall line and of orographic precipitation. Preprints, 
Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 217–220.  

Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V., 2011: 
The AROME-France Convective-Scale Operational Model. Mon. Weather Rev. 139, 976–991.  

Toth, Z. and Kalnay, E., 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Weather 
Rev. 127, 3297–3318. 

Vána, F., Bénard, P., Geleyn, J.-F., Simon, A., and Seity, Y., 2008: Semi-Lagrangian advection scheme 
with controlled damping: An alternative to nonlinear horizontal diffusion in a numerical weather 
prediction model. Q. J. Roy. Meteor. Soc. 134, 523–537. 

Vié, B., Nuissier, O., and Ducrocq, V., 2011: Cloud-resolving ensemble simulations of Mediterranean 
heavy precipitating events: Uncertainty on initial conditions and lateral boundary conditions. 
Mon. Weather Rev. 139, 403–423. 


