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Abstract―This paper presents the results of an objective analysis on thunderstorm 
climatology in Hungary. The examination was based on composite PPI (plan position 
indicator) images made by Doppler radars of the Hungarian Meteorological Service 
between 2004 and 2012. In our research, thunderstorms were represented with so-called 
thunderstorm ellipses, and their time and spatial distribution were examined. Three types 
of thunderstorm ellipses and stormy days were defined with radar reflectivity set to 45, 
50, or 55 dBZ. Most stormy days and ellipses happened in late spring and summer of 
2007 and 2010. The daily frequency of these objects peaked in the late afternoon period. 
The detected ellipses had maxima in the north-eastern, north-central, and south-western 
parts of Hungary. Beyond information and characteristics from the past, these methods 
and results can be useful for forecasting severe thunderstorms. 
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1. Introduction 

Radar-based thunderstorm climatology has a long history in the United States. 
The first studies appeared in 1950s (Braham, 1958), followed by many other 
researches for different parts of the country (for example: Myers, 1964; Henz, 
1974; Falconer, 1984; Croft and Shulman, 1989; Mohee and Miller, 2010). In 
the last two decades, some works have been carried out in this field in Europe 
(Höller, 1994; Jaeneke, 2001; Rigo and Liasat, 2002; Weckwerth et al., 2010; 
Rudolph et al., 2011; Davini et al., 2012), South America (Paiva Pereira and 
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Rutledge, 2003), Canada (Brimelow et al., 2004), and Australia (Steiner and 
Houze, 1996) as well. 

The first Hungarian study on thunderstorm climatology was made by Héjas 
(1898), followed by Raum (1910). Some studies dealing with different aspects 
of thunderstorm climatology appeared in the 1960s (Ozorai, 1965; Götz and 
Pápainé, 1966; 1967). All these works were based on visual observations. Later, 
radar and satellite data (Boncz et al., 1987; Bodolainé and Tänczer, 1991), then 
nowcasting methods (Horváth and Geresdi, 2003; Horváth et al., 2007) 
appeared in the Hungarian studies. However, these works considered 
thunderstorms from mainly dynamical and synoptical aspects, so our work is the 
first attempt to examine thunderstorm climatology in Hungary using Doppler 
radar data. The first results of this research were presented by Horváth et al. 
(2008) but only for a shorter period. 

The aim of this paper is to briefly describe the time and spatial distribution 
of severe thunderstorms detected by HMS’s radars in the period of 2004 to 
2012. 

2. Methodology 

2.1. Radar measurements  

The first weather radar in Hungary was introduced in 1967. In the next decades, 
other locators were set in the country and the Hungarian Meteorological Service 
(HMS) built up its radar network system. By 2004, HMS’s Soviet-made MRL-5 
locators were replaced by modern Doppler radars.  

Hungary is covered by three weather radars: (the western, the central, and 
the eastern locators, and they all operate on C-band (wave length = 5 cm) 
(Geresdi, 2004). During the measurement, the Doppler-wind was applied for 
noise filtering and the results were upgraded, filtered, and smoothened into 
composite fields. From each scan column, the highest reflectivity values were 
taken (Collier, 1996). The resolution of the composite PPI (plan position 
indicator) images was 2 km × 2 km in space and 15 minutes in time. To further 
reduce noises of reflectivity, median-filter method (Tukey, 1977) was also used 
before beginning the analysis. 

2.2. Core of the methodology: the TITAN method 

The TITAN (Thunderstorm Identification, Tracking, Analysis and Nowcasting) 
method was developed by Dixon and Wiener (1993). Using the identification 
part of this method the irregular-shaped thunderstorms detected by radar could 
be characterized by regular ellipses. The main point of identification is as 
follows: the parameters of the ellipses are determined by the covariance matrix 
of the isolated, irregular-shaped cluster on the image using the condition that the 
area of the cluster and the ellipse has to be equal. With this method, the focus 
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The highest number of stormy days was counted in 2007 for all categories. 
The lowest values were detected in 2005 for extremely severe days and in 2012 
for the other two types (Table 1). About 80 to 95% of stormy days and 97 to 
98% of thunderstorm ellipses were detected between April and September, 
therefore this period was called thunderstorm season. The stormiest month was 
July followed by June, August, and May. Other months had much lower values 
(Fig. 2). On average, 118 severe, 82 highly severe, and 20 extremely severe 
ellipses were detected on a stormy day in the thunderstorm season. Note that 
these calculated values are not equal to the number of thunderstorms, because a 
severe thunderstorm may appear on subsequent radar images. Table 2 shows the 
time distribution of days with at least 50 or 100 objects. The maxima were in 
2007 and 2010, while 2004, 2005, and 2012 had the lowest values. The highest 
number of severe thunderstorm ellipses (1,115 objects) were detected on August 
20, 2007, while for the other two types, June 14, 2010 had the highest values 
(527 and 139 ellipses). According to ECMWF (European Centre for Medium-
Range Weather Forecast) analysis, on these days a cold front of a northern 
cyclone reached the country. 

The daily cycle of these ellipses was also investigated (Fig. 3). Only results 
for the thunderstorm season are shown in this paper. The minima of appearance 
were detected at 8:30 and 9:15 for severe, 8:30 for highly severe, and 7:00 for 
extremely severe ellipses. The time distribution of the objects was asymmetric 
and the maxima were at 16:45 for severe, 16:30 for highly severe, and 16:30 and 
17:30 for extremely severe ellipses. 

 
 
 
 
 
Table 1. Annual distribution of severe, highly severe, and extremely severe stormy days 
in the period of 2004 to 2012. 

Year Severe 
stormy days 

Highly severe 
stormy days 

Extremely severe 
stormy days 

2004 189 116 44 
2005 188 101 26 
2006 169 107 38 
2007 190 121 69 
2008 142  94 40 
2009 142 102 45 
2010 141  93 53 
2011 136 99 52 
2012 122 90 43 

Average 158 103 46 
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Fig. 2. Annual course of a) severe, b) highly severe, and c) extremely severe stormy days 
in the period of 2004 to 2012. 
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Table. 2. Annual distribution of days with 50 or 100 severe, highly severe, or extremely 
severe ellipses in the period of April to September between 2004 and 2012. 

Year 

Days with at least 50 Days with at least 100 

severe highly 
severe 

extremely 
severe severe highly 

severe 
extremely 

severe 

ellipses ellipses 
2004 57 12 1 34 6 0 
2005 45 10 0 30 2 0 
2006 61 18 1 39 13 0 
2007 75 40 1 59 19 0 
2008 65 20 2 42 12 0 
2009 62 15 1 42 4 0 
2010 67 35 2 54 20 1 
2011 72 32 3 53 16 0 
2012 54 23 0 36 8 0 

Average 62 23 1 43 11 0 
 

 
 

 

 

 

Fig. 3. Daily cycle of the detected severe (45 dBZ), highly severe (50 dBZ), and 
extremely severe (55 dBZ) thunderstorm ellipses in the period of April to September 
between 2004 and 2012. The time resolution is 15 minutes. Times are given in Hungarian 
Local Time (HLT = UTC + 2 hours). 
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3.2. Spatial distribution of thunderstorm ellipses 

The spatial distribution of thunderstorm ellipses was analyzed by constructing 
thunderstorm statistic maps. The area resolution was set to 18 km ×18 km. 

Thunderstorm statistic maps were created for the entire year in the period 
of 2004 to 2012, but only results for the thunderstorm season are represented in 
this paper. Between October and March, there was only a few objects detected, 
while the measurement noises were high, especially in the early years. During 
the nine-year period, the maxima of severe, highly severe, and extremely severe 
thunderstorm ellipses were detected mostly in the north-eastern, north-central, 
and south-western parts of Hungary. Fewer objects appeared in the north-
western and south-eastern parts of the country. Note that minima were mostly 
far from radars; these lower values could be originated to detecting problems 
(Fig. 4).  

4. Summary and conclusions 

This paper presents the results of an objective, radar-based analysis on 
thunderstorm climatology in Hungary for the nine-year period of 2004 to 2012. 
Most stormy days and ellipses were detected in late spring, summer and in 2007, 
2010. The daily frequency of these objects peaked in the late afternoon period. 
The detected ellipses had maxima in the north-eastern, north-central, and south-
western parts of Hungary. Beyond information and characteristics from the past, 
these methods and results can be useful for forecasting severe thunderstorms. 
The cell-detection algorithm should be more integrated into automatic warning 
systems or can be used in researches on supercells. In the future, this objective 
examination can be carried out for previous years but better noise-filtering 
methods should be developed. Furthermore, satellite and lightning data can be 
combined with these results as well. 
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Appendix 

Mathematical background of the identification 

The method of calculating ellipses is as follows (Dixon and Wiener, 1993): 
Suppose there is an irregular cluster on a radar image which has n detected 
pixels. The center of a cluster is defined by 
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where x and y indicate the longitude and latitude of pixels which have 
reflectivity higher than a given threshold value. The covariance matrix of this 
cluster is 
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f is deviation from the center by the y coordinate  

 

  , (4) 
 

and e is 
 

 . (5) 
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The normalized eigenvectors of this matrix are 
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Then the rotation of the ellipse major axis relative to the x axis is given by these 
vectors 
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The eigenvalues of the covariance matrix (λ1 és λ2) represent the variances of the 
data (pixels) 
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The area of the detected cluster is  
 
  ndxdyA = , (11) 

 

where dx and dy are the grid spacing on the radar image. 
The area of an ellipse is given by 
 
  abT π= , (12) 

 

where a and b represents the major and minor axes of the ellipses.  
The main idea is that the area of the irregular cluster and the area of the ellipse 
have to be equal, therefore 
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 TA = . (13) 
 

So the major and minor axes of the ellipses can be calculated by 
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With these parameters ( yx, , a, b, θ), the focus points and the equation of the 
ellipse can be determined. 
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