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Abstract—The operational AROME (Applications of Research for Operations at
MEsoscales) mesoscale numerical weather prediction (NWP) model has been run using
interpolated analyses of the ALADIN (Aire Limitée Adaptation Dynamique
Développement International) NWP model for its initialization since the end of 2010 at
the Hungarian Meteorological Service (HMS). In order to improve the initial conditions,
a local three-dimensional variational (3DVAR) data assimilation system was developed
for the Hungarian version of AROME (AROME-Hungary). Regarding the data
assimilation cycling strategy, it was shown that 3 hourly rapid update cycling (RUC),
which was implemented operationally in March 2013 using conventional observations,
outperforms 6 hourly cycling method. This paper describes at length the main
characteristics of this local data assimilation system and its impact on the model short-
range forecasts. Although the forecasts of AROME-Hungary based on a local data
assimilation were already improved compared to the previous implementation
(initialization via interpolated analyses of the ALADIN model), there is still a way to go
to exploit the full benefit of the local 3DVAR assimilation cycle. Current development
works aim at improving the system through exploitation of remote sensing observations
(radar, GPS, satellite AMVs), with a special emphasis on humidity information. All tested
observations showed promising performance on both the analyses and forecasts of the
AROME-Hungary model, which should lead to their respective operational
implementation in the near future.

Key-words: operational numerical weather prediction, mesoscale data assimilation, rapid
update cycle, remote sensing observations

215



1. Introduction

State of the art mesoscale numerical weather prediction (NWP) models, such as
ALADIN (Horanyi et al., 1996) and AROME (Seity et al., 2010), describe the
time evolution of small scale processes in the atmosphere (e.g., convection, sea
breeze, fog), through the applied prognostic microphysical parametrization
schemes and the non-hydrostatic dynamics. Advanced model dynamics and
physics are, however, in vain, if the initial state does not contain appropriate
information regarding the small-scale weather systems we aim to describe. The
simplistic approach for the initialization of limited area models (LAMs) is to
interpolate the analysis or the forecast of the driving model (i.e., a global model
or another LAM) to the mesoscale grid. This approach, often referred to as spin-
up initialization, is computationally cheap (i.e., there is no need to run expensive
data assimilation schemes), nevertheless it implies several drawbacks, which
will be demonstrated in this section. The sophisticated and scientifically sound
alternative of the spin-up initialization is to run a local data assimilation system
in the LAM, combining the high-resolution first guess of the mesoscale model
with the available high-density observations.

Data assimilation is achieved by solving the BLUE (Best Linear Unbiased
Estimation) analysis equation, which shows that the two main information used
for estimating the initial state (x,) are the background (x,) and the actual
observation set () (see e.g., Kalnay, 2003; Lorenc, 1986; Evensen, 2009):

x,=x,+K(y—-H(x,)) (1)

In Eq.(1), K stands for the Kalman gain determining the weight of the
background and the observations in each gridpoint in an optimal way, i.e., based
on their reliability in a statistical sense. H denotes the observation operator,
which enables the comparison of the observations with the background through
a projection from the model space to the observation space.

In practice local data assimilation is substantially more expensive to
implement than spin-up initialization (both computationally and regarding
manpower), but in turn, it enables a more accurate representation of small-scale
phenomena in the initial state. In order to demonstrate this, the kinetic energy
spectra for a spin-up analysis (ALADIN analysis interpolated to the AROME-
Hungary grid) and the local 3DVAR analysis of AROME-Hungary are plotted
in Fig. 1. It can be seen that the energy spectra for the AROME analysis follows
rather close the theoretical slope of energy cascade, i.e., k° for small k
wavenumbers (large scales) and kK~ for high k wavenumbers (small scales). In
contrast, the energy spectra of the spin-up analysis is far from the theoretical
slopes, especially at mesoscales (above wavenumber 50, which corresponds to
spatial scales smaller than 25 km), where the energy curve is rather noisy. The
mesoscale noise in the spin-up analysis is introduced by the interpolation, and it
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reflects that the ALADIN analysis with its 8 km grid-length (30—45 km effective
resolution) do not hold physical information on the mesoscales resolved by the
AROME model with its 2.5 km grid-length. Among others, this diagnostic
comparison gave a great motivation for implementing a local 3DVAR data
assimilation system for the AROME-Hungary, which finally became operational
in March 2013 due to approved ability to improve the forecast performance
compared to the spin-up initialization approach. Similar positive impact of
mesoscale data assimilation implementations have been reported by Benjamin et
al., (2004), Fischer et al., (2005), Boloni (2006), Randriamampianina (2006a),
Brousseau et al. (2011).

The structure of the article is as follows: In the next section, the operational
DA system will be described, with special emphasis on rapid update cycling,
and also, the added value and the impact of the AROME-Hungary data
assimilation system will be detailed. In Section3, we briefly review
experimental data assimilation studies with non-conventional observations
added to the existing operational system. Finally, the last section gives a
summary of the presented work and provides corresponding conclusions.

Kinetic Energy Spectra at 1000 hPa
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Fig. 1. Wind energy spectra (kg m* s2) at 1000 hPa for the AROME (dx = 2.5 km)
analysis (red) and for an interpolated ALADIN (dx=8 km) analysis (black). Dotted
straight lines correspond to the theoretical slopes of kinetic energy at large- (k) and

mesoscales (k7) if using a log-log scale.
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2. Operational data assimilation system of the AROME mesoscale model
2.1. The assimilation system

The local data assimilation system of AROME-Hungary is based on a 3 hourly
rapid update cycle (RUC). The organization of one particular assimilation step at
00 UTC is shown schematically in Fig. 2, where the lateral boundary conditions
in the assimilation cycle are provided by the global ECMWEF/IFS (European
Centre for Medium-Range Weather Forecasts/Integrated Forecast System)
model, and surface parameters are initialized either using the surface analysis of
the operational ALADIN model where available (at synoptic times, i.e., 00, 06,
12, and 18 UTC) or using the previous AROME/SURFEX (SURFace
Externalized) forecast (at sub-synoptic times 1.e., 03, 09, 15, and 21 UTC).

‘/»Surf\ ./lSUrf‘ N _.'//’Sul’f \"-.
I ANAL ¥ Guess | | ANAL \
| ALAD | AROM ' | ALAD
AL N | B il

NN

12 15 18 21 0o a3 06
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Fig. 2. Schematic figure of the data assimilation cycle applied for AROME showing the
elements of a 00 UTC assimilation run.

The core of AROME-Hungary data assimilation system is an incremental
3DVAR method, where the basic mathematical formulation and its
corresponding implementation is very similar to the one used in the IFS,
ARPEGE, and ALADIN models (Courtier et al., 1998; Fischer et al., 2005;
Vasiliu and Horanyi, 2005; Boéléni 2006). An important component of the
3DVAR is the representation of background error statistics which plays a key
role in filtering the information coming from observations and spreading it out
to the model grid (see e.g., Berre 2000; Brousseau et al., 2011). In the current
operational system, the background error covariance matrix was sampled from
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the downscaling of an ALADIN Ensemble Data Assimilation (EDA)
experiment, run for a summer period using 3-hour forecast ranges and 5 EDA
members to get sufficient statistical sample (Bdloni et al., 2014). Input
observations for the AROME-Hungary 3DVAR suite are provided by the
OPLACE (Observation Preprocessing for LACE (Limited Area modeling for
Central Europe)) system, which includes both conventional and non-
conventional observations. Although the currently operational AROME-
Hungary data assimilation system uses only conventional observations, the
system is able to assimilate non-conventional observations, as described in
Section 3.

Delivering the mesoscale NWP forecasts as early as possible is of high
priority for every operational forecasting centre. In order to find the optimal
observation cut-off time (waiting time after the nominal analysis time) of the
operational AROME-Hungary data assimilation system, the timeliness of the
incoming observations was diagnosed for the area of interest. In Fig. 3, the
availability of conventional observations at 00 UTC is shown, based on the amount
of data received by the OPLACE system. After gaining this result, the observation
(short) cut-off time has been set to one hour, which brings the fastest possible
production of AROME forecast with an almost complete input observation set.
This rather early cut-off enables a faster AROME forecast production compared to
the former operational version of AROME-Hungary, which was based on a spin-up
initialization from the 3DVAR analysis of the ALADIN model, because the
ALADIN data assimilation system uses longer cut-off.
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Fig. 3. Estimation of the optimal short cut-off time (considering AROME integration
domain at 00 UTC) on January 26 (red columns), 27 (green columns) and 28 (blue
columns) 2013.
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2.2. The Rapid Update Cycle

In mesoscale NWP models, the accuracy of initial conditions is getting more and
more crucial with an increasing resolution, hence small scale processes of the
atmosphere have less and less predictability (Fabry and Sun, 2009). The rapid
update cycling approach with increased analysis frequency in the assimilation cycle
aims to involve more observations with reduced representativity error in time. It is
assumed that the more observations we consider for the update of the model state,
the better initial conditions we will get when starting a forecast from an analysis of
the assimilation cycle. Considering conventional observations for instance, the
different amount of used observations between a 6 hourly data assimilation cycle
and a 3 hourly RUC is plotted in Fig. 4 for a short period. At sub-synoptic times,
mainly aircraft and SYNOP reports provide almost a double amount of data per
day, due to the 4 extra analyses. To further emphasize the benefits of a RUC, it
should be mentioned that many remote sensing observations are available with high
temporal frequency, which are potentially beneficial in a data assimilation system
with high frequency cycling. Also, many of the remote sensing observations are
available in a very timely manner, almost immediately after analysis time, which
allows to keep the operational observation cut-off time rather short, and thus to
provide the forecasts with an early delivery.
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Fig. 4. The number of conventional observations used in a day in the RUC

implementation (green) and in a 6 hourly cycling (red). The amount of data was counted
in the period of March 15-23, 2014.

Beside these attractive features of the RUC system, there are some issues
which have to be treated carefully in case of using a frequent assimilation cycle,
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and thus, shorter background forecast lengths. The forecast model integration may
imply spin-up effects (noise due to spurious gravity waves or imbalances between
dynamics, atmospheric and soil physics) at the very short ranges, which can be
accumulated in the assimilation cycle through the background forecasts, and thus,
lead to degradation in the analyses and the forecasts. A usual practice in NWP, and
in the Hungarian version of the ALADIN model as well, is the use of initialization
techniques e.g., digital filter initialization (DFI) (Daley, 1991; Lynch et al, 1997),
which is a low-pass spectral filter removing high-frequency components of the
initial conditions. In case of AROME-Hungary, no DFI is applied because such
filtering is assumed to be too strong in case of a mesoscale non-hydrostatic model,
where gravity waves are described by the dynamics. To diagnose spin-up effects in
AROME-Hungary, surface pressure tendencies have been examined for very short-
range forecasts (+2 hours) for an arbitrarily chosen case. In Fig. 5, time evolution
of the surface pressure tendency provided by three different forecasts is shown for a
particular gridpoint over orography. The red curve corresponds to a forecast, which
was started from an AROME 3DVAR analysis, using a time-consistent coupling
scheme, i.e., when the lateral boundary condition (LBC) at initial time is the
interpolated global IFS forecast. The blue curve stands for a similar run with the
only difference of using a space-consistent coupling scheme, i.e., when the lateral
boundary condition (LBC) at initial time is the AROME 3DVAR analysis itself. As
an additional reference, the tendency from an AROME forecast using a spin-up
initialization is added (green curve), i.e., where both the initial condition and the
LBC at initial time is the interpolated global IFS forecasts. As the high amplitude
oscillation in the time evolution of surface pressure tendency is an indicator of
noise, it has been concluded based on Fig. 5, that AROME forecasts using a RUC
assimilation with a space-consistent coupling scheme imply less noise than a RUC
with a time-consistent coupling approach or the spin-up initialization. Supposedly,
the higher amplitude oscillation in case of the spin-up initialization is caused by the
interpolation noise which is more emphasized over orography. It should be also
mentioned that plotting the evolution of surface pressure tendency on a horizontal
map (not shown) supports the choice for the space-consistent coupling scheme.
Namely, in the time-consistent case, noise patterns (indicated by large tendencies)
penetrate from the domain borders towards the middle of the domain in a
rectangular shape. In Fig. 5, this is captured by the red curve at integration steps
40-45 as an outstanding wave. An explanation for this structured noise might be
that imbalances between the local 3DVAR analysis and the LBC at initial time
arise, due to the inconsistent model states of the AROME and IFS models near the
boundaries. The final decision on implementing a 3 hourly RUC instead of a
traditional 6 hourly cycling was based on a comparison study over a 1 month
period during summer 2012, where the skill of these two cycling options was
measured. Verification results — which will be studied in the next section —
reflected a better performance of the 3 hourly RUC, leading to its operational
implementation.
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Fig. 5. Temporal evolution of surface pressure tendency (Pa/min) over orography during
the first 2 hours of a forecast concerning spin-up initialization (green dashed line), time-
consistent coupling approach (red line), and space-consistent coupling approach (blue
dashed line).

2.3. The impact of local data assimilation scheme on the analysis and forecast

For measuring the impact of the local data assimilation scheme, three
experiments with AROME-Hungary have been run and compared for several
periods based on objective verification scores primarily. The three experiments
are an AROME suite based on spin-up initialization (called DYNA), and two
AROME suites based on local 3DVAR data assimilation, one of them using a
6 hourly cycling (called CONV6H) and another one using a 3 hourly rapid
update cycling (called CONV). Forecasts have been run up to +36 hours starting
at 00 UTC network times. Concerning the verification, both point-based and
object-based scores have been computed. In the point-based verification, surface
and radiosonde observations have been used as reference. The applied object-
based method calculates average precipitation of forecasted weather objects (or
alternatively the full domain average), and compares with calibrated radar
precipitation measurements as reference. In Figs. 6a and 6b, 10 m wind and
mean sea level pressure scores are shown for the period between June 25 and
July 25, 2012. It is rather clear from these figures that both the 6 hourly and the
3 hourly RUC 3DVAR provide an added value compared to the spin-up
initialization with respect to both RMSE and BIAS. Moreover, the 3 hourly
RUC provides slightly better scores than the 6 hourly cycling during daytime,
while during the night, scores show a rather low sensitivity to the cycling
frequency. To demonstrate the impact on precipitation, object-based verification
score (domain average precipitation) is shown in Fig. 7. It can be seen, that in
comparison with the spin-up initialization, both the 6 hourly 3DVAR cycling
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and the 3 hourly RUC could reduce the overestimation of the precipitation
maximum linked to convective activity in the afternoon. It is also clear from
Fig. 7, that the 3 hourly RUC provides slightly better precipitation forecasts than
the 6 hourly cycling, by reducing the overestimation further.
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Fig. 6a. RMSE and BIAS scores corresponding to the spin-up initialization scheme
(green), 3 hourly RUC (blue), and 6 hourly cycling (red) for 10 m wind speed (m/s).
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Fig. 6b. RMSE and BIAS scores corresponding to the spin-up initialization scheme (green),
3 hourly RUC (blue), and 6 hourly cycling (red) for mean sea level pressure (hPa).
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Fig. 7. Comparison of 3h RUC (blue), 6 hourly cycling (red) and the spin-up initialization
scheme (green) regarding domain average precipitation (mm/h). The reference is the
calibrated radar measurement (black).

Based on the success of the RUC approach (Figs. 6a, 6b, and 7), a
parallel suite with a 3 hourly RUC data assimilation system was compared
with the former operational AROME-Hungary system (based on spin-up
initialization) over the period from February 20 to March 12, 2013. This
parallel suite was set up in a fully operational environment, providing real
time outputs for the forecasters of the Hungarian Meteorological Service (this
time both for 00 and 12 UTC base times), with the main aim to make a final
decision about the operational implementation of the RUC system, in case of
preferable scores and positive feedbacks from the forecasters. Based on the
verification results, the RUC system clearly outperformed the forecasts of the
former operational AROME-Hungary suite with spin-up initialization, which
1s demonstrated in Figs. 8a, 8b for 2 m temperature and in Fig. 9 for
precipitation. Feedbacks of the forecasters also confirmed the slight but
consistent improvements implied by the RUC system, and this led to its
operational implementation on March 17, 2013.
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Fig. 8a. RMSE and BIAS scores of AROME forecasts according to the spin-up
initialization (DYNA — green), and the 3 hourly rapid update cycle (CONV — blue) for
2 m temperature (°C).
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Fig. 8b. Normalized RMSE differences according to the spin-up initialization (DYNA —
green), and the 3 hourly rapid update cycle (CONV — blue) for 2 m temperature (°C).
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Fig. 9. Symmetric Extremal Dependency Index (SEDI) for precipitation according to the
spin-up initialization (DYNA — green), and the 3 hourly rapid update cycle (CONV —
blue) for precipitation (mm/12h).

2.4. Diagnosing analysis sensitivity to observations

An obvious way for the further development of the operational RUC is to bring
non-conventional observations to its analysis system. In order to figure out, which
observations would contribute the most to the analysis, the DFS (Degrees of
Freedom for Signal) diagnostic tool (Chapnik et al., 2006; Cardinali et al., 2004)
has been adapted and applied at the Hungarian Meteorological Service. The DFS
tool diagnoses the observation influence on the analysis, thus, if applied for the
available observation types, it provides an indication on their relative contribution.
The DFS diagnostic is computed as the trace of the Kalman gain matrix projected
to observation space:

DFS = Tr(HK) (2)

where K and H denote respectively the Kalman gain matrix and the observation
operator introduced in Eq. (1). In practice, this trace cannot be computed,
because the gain matrix K is not known explicitly. Girard (1987) suggested a
solution which enables to evaluate the above mentioned trace with the following
approximation:

THHK)=(y - y) R (H(x,)- H(x,)) 3)

226



where H(x,) gives the analysis state at observation locations using a
background and the observations (y), and H(x',) stands similarly for the
analysis at observation space but using the perturbed observations (y’) (and
the same background). In Eq.(3), R stands for the observation error
covariance matrix.

Therefore, DFS can be calculated through a random perturbation of the
observations, and the method is flexible in a sense that DFS values can be
computed for any subset of the available observational data. For a given date,
the DFS was computed with conventional and some experimentally used non-
conventional observations. In order to verify the influence of the available
observations, both the absolute and the relative DFS diagnostics were
computed (Fig. 10). Absolute DFS stands for what have been explained
above in Egs. (2) and (3), while relative DFS is the absolute DFS normalized
by the number of observations within the given observation subset. The first
conclusion based on the absolute DFS is that the largest contribution to the
analysis i1s provided by wind observations, i.e., the largest amount of
information is extracted from these observations in the current data
assimilation system. On the other hand, relative DFS reflects the importance
of humidity (from surface SYNOP stations and TEMP radiosondes), RADAR
reflectivity (RADAR-Z), and GNSS (global navigation satellite system) ZTD
(zenith total delay) observations. In conclusion, DFS diagnostics show that
radar reflectivity and GNSS ZTD observations are promising candidates for
assimilation in the future version of the RUC system. It should be mentioned
that DFS provides a theoretical measure of the information content projected
from the observations to the analysis and it does not provide any indications
on the impact attributed to the forecasts. Another point to be added here is
that no radiance observations have been considered and diagnosed in the
recent RUC system.

3. Use of non-conventional observations in the AROME 3DVAR system

In the following section, we present the latest developments of the RUC system
since its operational implementation. The need of using more observations,
especially non-conventional ones, was already mentioned. Specifically, the
observations measuring humidity are potentially good candidates based on the
results of the DFS analysis sensitivity study shown in the previous section. At
the same time, to gain advantage of the RUC system, early accessible
observations with high frequency and high density are also required. Taken into
account these objectives, the atmospheric motion vectors (AMV) from Meteosat
Second Generation (MSG) geostationary satellite, RADAR measurements as
reflectivity and radial wind, and GNSS ZTD observations have been
investigated in the operational data assimilation system of AROME-Hungary.
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Fig. 10. Absolute and relative degrees of freedom for signal (DFS) for experimental data
assimilation of AROME-Hungary at 12 UTC, January 3, 2014.

3.1. The impact of the Atmospheric Motion Vectors

EUMETSAT (European Organization for the Utilization of Meteorological
Satellites) MSG provides sets of satellite winds (AMVs) extracted from
sequences of well-navigated and calibrated images produced by the SEVIRI
(Spinning Enhanced Visible and Infrared Imager) instrument. Accordingly,
AMVs are derived from SEVIRI infrared, water vapor, and visible channels. At
the HMS MSG AMV date is received through the EUMETCast broadcasting
service of EUMETSAT with hourly frequency and processed in OPLACE for
data assimilation purposes.

MSG AMV data is proved to be beneficial in nowcasting applications and
in data assimilation systems (Randriamampianina, 2006b). Furthermore,
numerous examples exist (Forsythe et al., 2014), where AMVs are operationally
assimilated in a similar way like the adopted technique used in the ALADIN
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model in Hungary. As MSG AMYV observations possess many advantages
needed for a RUC data assimilation, a summertime impact study has been run
with AROME-Hungary, where MSG AMV observations were added to the
conventional observations. The implementation of the AMV data in AROME-
Hungary was done according to Randriamampianina (2006b). To assess the
impact of AMVs two experiments were conducted during the period of June 25
— July 25 in 2012. The AROME-Hungary forecasts initialized at 00 and 12 UTC
were verified against SYNOP and radiosonde observations. Regarding the
impact of MSG AMV observations, in Figs. //a and //c RMSE and BIAS
scores are plotted with the corresponding (Figs. 11b and /1d) normalized RMSE
differences for 10 m wind speed and 2 m dew point temperature forecasts. In
these figures, CONV stands for the operational AROME-Hungary and GEOW
denotes the experimental run, where MSG AMV was assimilated as well. In
case of 10 m wind speed forecasts, the AMV experiment provides better skill for
the shorter range forecasts up to 15 hours. Concerning the 2 m dew point
temperature verification scores, the overall decrease of the error is perceptible
and it is even statistically significant for some longer ranges. To conclude, AMV
data in AROME-Hungary provides small contribution with respect to the
amount of assimilated data, but with positive signal on the short-range forecasts.
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Fig. 11a. Experimental assimilation study of AROME-Hungary for the period between June
25 and July 25, 2013. RMSE and BIAS scores of AROME forecasts corresponding operational
AROME with conventional observations (CONV — red) and AROME with conventional plus
AMYV observations (GEOW — green) are plotted for 10 m wind speed (m/s).
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Fig. 11b. Experimental assimilation study of AROME-Hungary for the period between
June 25 and July 25, 2013. Normalized RMSE differences between operational AROME
with conventional observations (CONV — red) and AROME with conventional plus AMV
observations (GEOW — green) are plotted for 10 m wind speed (m/s).
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Fig. 11c. Experimental assimilation study of AROME-Hungary for the period between
June 25 and July 25, 2013. RMSE and BIAS scores of AROME forecasts corresponding
operational AROME with conventional observations (CONV — red) and AROME with
conventional plus AMV observations (GEOW — green) are plotted for 2 m dew point
temperature (°C).
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Fig. 11d. Experimental assimilation study of AROME-Hungary for the period between
June 25 and July 25, 2013. Normalized RMSE differences between operational AROME
with conventional observations (CONV —red) and AROME with conventional plus AMV
observations (GEOW — green) are plotted for 2 m dew point temperature (°C).

3.2. The impact of the radar reflectivity and radial wind observations

Radar measurements play an important role in nowcasting, and nowadays they
also contribute to the initial conditions of mesoscale NWP models. The weather
RADAR instrument receives emitted electromagnetic signal to measure the
reflectivity of the atmosphere's elements along the emitted ray's path. From the
backscattered radiation one can estimate the reflectivity, i.e., the precipitation
intensity, and from the phase shift of the backscattered signals the radial wind
can be measured using Doppler's law.

Focusing on data assimilation, the utility of radar observations has been
already demonstrated by different studies (see, e.g., Lindskog et al, 2004; Snyder
and Zhang, 2003; Montmerle and Faccani, 2008). However, assimilating the
observed quantities of the radar is not straightforward since the relationship
between the measured quantities and the control variables of the data assimilation
scheme is complex and non-linear. This relation in case of radial wind observation
is less complex than that with reflectivity, where the radar equation gives the direct
relationship between the observed hydrometeors and the 3DV AR control variables.
Instead of extending the control variables to account also for hydrometeors, an
alternative solution was worked out by Caumont et al. (2010) and Wattrelot et al.
(2014) using 1D+3DVAR method, which enables to retrieve columns of relative
humidity and temperature from reflectivity profiles as pseudo-observations. This
approach is based on a 1D Bayesian estimate, which uses the assumption that a
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well-chosen linear combination of model simulated reflectivities in the
neighborhood of the observation provides comparable quantities to what is
observed (see Wattrelot et al. (2014) for more details).

In the observing system of the Hungarian Meteorological Service dual-
polarized Doppler radars are used which provide reflectivity and radial wind
observations with 240 km and 120 km range, respectively. Raw radar data
requires specific pre-processing in consideration of data assimilation which
consists of the elimination of non-meteorological and noisy signals. Due to this
quality control, for instance, reflectivity data under 7 dBz is filtered to avoid
clear-sky echo and also unwanted RLAN (Radio Location Area Network)
signals are rejected. After a thorough pre-processing with quality control,
RADAR data is presented in Cartesian coordinates and in BUFR, which is one
of the accepted format of the current 3DV AR system.

An observing system experiment with AROME-Hungary was made for an
early, but convective summer period of May 15 — June 18, 2012. Point- and
object-based verifications were computed to evaluate the performance of the
operational AROME-Hungary and experimental runs including a combination of
radar reflectivity and radial wind. In the first experiment with assimilation of
both the radar Doppler wind and reflectivity, skill scores showed positive impact
on forecasts of precipitation, but we observed also a cold and wet bias for
surface parameters (not shown). A possible explanation of the observed bias
might be that the assimilation of reflectivity data over-saturates the planetary
boundary layers (PBL), which degrades the forecast of surface parameters
through physical process along the model integration. To verify this assumption,
another experiment was run avoiding the use of reflectivity observations below
1000 m from all 3 used radar stations. As a result, no degradation on surface
parameters was observed, but on the other hand, the impact on precipitation
forecasts was also reduced. The average intensity of the precipitation objects
was verified against objects measured by the radar (Fig. 12). The four curves are
respectively the operational AROME-Hungary (AromeCONV), the
experimental AROME with complete set of radar data (AromeFULL), AROME
runs with blacklisted reflectivity (AromeBLACK), and radar observations
(RADAR). In Fig. 12, one can see that AromeBLACK provides the closest
estimation to radar, however, the diurnal cycle of the maximum precipitation is
still slightly shifted with delay in time. Additionally, a case study is shown in
Fig. 13, where 3 hourly accumulated precipitation forecasts are plotted for all
the three tested runs. One can see that the AromeFULL run predicts more
realistic precipitation over north-eastern Hungary than AromeCONV, but it
overestimates slightly in the mid-western part of the country. AromeBLACK is
able to correct this overestimation, but the positive signal is also suppressed by
filtering reflectivity. To conclude, the assimilation of radar data has major
impact on forecasts of precipitation, but the quality control has to be further
investigated and improved for better accounting of all potential measurements.

232



= = —— Radar

—— AromeCONV
= AromeFULL
— AromeBLACK

Average intensity of objects [mm)]
2
1

T 1 T 1 T 1 T 1 T 1 1 T 1 T 1 T 1 T 1 T T T T T
1 2 3 4 5 & 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Lead time [h]

Fig. 12. Object-based verification of radar data assimilation experiments where average
intensity of precipitation (mm/h) objects is verified against radar measurements for the period
June 7 —June 18,2012. AromeCONV: Operational AROME-Hungary (red line),
AromeFULL: experimental AROME with RADAR reflectivity and radial wind observations
added to conventional ones (green line), AromeBLACK: experimental AROME with same set
of observations except reflectivity which was blacklisted below 1000 m elevation (blue line).
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Fig. 13. A case study at 03 UTC, June 5, 2012 for 3 hourly accumulated precipitation
forecast according to AROME model with operational configuration (AROME CONYV),
experimental AROME with radar reflectivity and radial wind (AROME FULL),
experimental AROME with blacklisted low level reflectivity (AROME BLACK), and
radar composite image (RADAR OBS).

3.3. The impact of the GNSS ZTD observations
Signal delay originating from different constituents of the troposphere and

stratosphere can be extracted from satellite constellations of GNSS. The zenith
tropospheric delay (ZTD), which is the converted-to-distance time delay,
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provides valuable information on atmospheric water vapor content expressed in
length units along the zenithal direction above the ground-based GPS receiver
station. Bevis et al., (1992) describes at length the principle of such
measurement. The number of ground-based GPS stations over Europe has been
increasing during the last years, and their use for meteorological purposes is
coordinated by EUMETNET GNSS Water Vapour Programme (E-GVAP). E-
GVAP also provides a data hub allowing the assimilation of GNSS ZTD
observations with high spatial and temporal resolution. The Hungarian GNSS
network (so called SGOB) operated by the Satellite Geodetic Observatory of
Hungary was added to E-GVAP officially at the end of 2013, which provides
access to a dense station network of ground-based GPS over the Carpathian
Basin. This was a good motivation for us to assimilate the GNSS ZTD data.

The impact of GPS ZTD observations in data assimilation systems has been
already investigated in the ARPEGE/ALADIN/AROME model family (see e.g.,
Yan et al, 2008; Poli et al, 2007; Storto and Randriamampianina, 2010). For the
assimilation of E-GVAP ZTD data, a whitelist approach is used containing only
stations with good-quality measurements. The whitelist is created according to the
following criteria evaluated during a passive assimilation for a period of 15 days:
1) the availablility of data is more than 40%, ii) observation minus background
departures have Gaussian distribution, the absolute bias and also the standard
deviation are both less than 40 mm, ii1) the difference between station altitude and
corresponding model orography height is less than 250 meter. We were able to
choose 67 active stations inside our area of interest. The computed bias at each
selected station is used as static bias correction in the assimilation scheme.

The impact of ground-based GNSS ZTD was investigated with AROME-
Hungary over a winter period of 2014, namely January 5 to 27. The operational
AROME-Hungary forecasts and the experimental AROME run with GNSS ZTD
were compared with verification against SYNOP and radiosonde observations.
In Fig. 14a, RMSE and BIAS scores are plotted for 2 m dew point temperature
forecasts and the corresponding (Fig. /4b) normalized RMSE differences with
significance test check. It can be seen that the experimental run (marked PGPS)
has better skill scores on forecast of surface dew point temperature than the
operational one (marked CONV), however, it is not statistically significant. In
addition, one case study is presented in Fig. /5, showing the accumulated
precipitation during the first 3 hours of the forecasts. In this case, the operational
AROME-Hungary (CONV) provided a strong overestimation of precipitation as
compared to the measured SYNOP observations plotted with numbers, probably
due to spin-up effects. By assimilating ZTD observations (PGPS), the AROME
forecast became more realistic with a reduction in the amount of predicted
precipitation. This example showed, that the assimilation of GNSS ZTD
observations is advantageous for improving short-range model forecasts,
particularly regarding humidity, which is very promising to further improve the
current operational AROME system.
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Fig. 14a. RMSE and BIAS scores of AROME forecasts corresponding to the operational
AROME with conventional observations (CONV — red) and AROME with conventional
plus GNSS ZTD observations (PGPS — green) for 2 m dew point temperature (°C).
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Fig. 14b. Normalized RMSE differences between operational AROME with conventional
observations (CONV — red) and AROME with conventional plus GNSS ZTD
observations (PGPS — green) for 2 m dew point temperature (°C).
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Fig. 15. A case study at 15 UTC, January 3, 2014 for 3 hourly accumulated precipitation
forecast, AROME model with operational configuration (CONV), experimental AROME
with GNSS ZTD (PGPS) and SYNOP precipitation (in numbers) are plotted.

4. Summary and conclusions

The current operational RUC data assimilation system of the AROME-Hungary
mesoscale model has been described with a special emphasis on the design of the
assimilation cycle and the use of observations. It has been demonstrated, that the
RUC system using conventional observations (surface, radiosonde, and aircraft
measurements) improves the reliability of short-range forecasts compared to the
spin-up initialization technique (former operational configuration) and also
compared to the use of a 6 hourly data assimilation cycle.

The most important attempts for improving the current operational RUC
system so far consisted of impact studies using remote sensing observations, such
as MSG AMV, radar reflectivity, radial wind, and GNSS ZTD. The impact of
AMV data assimilation was found to be significantly positive on the forecast of
surface parameters, up to a forecast range of 15 hours. These results imply an
operational use of MSG AMV data in the near future. The assimilation of radar
data has been found to be useful in ameliorating precipitation forecasts, however,
as a side effect of radar data assimilation, a bias have been found in surface
parameters. The cause of these systematic errors has to be understood in order to
achieve an operational implementation of radar data assimilation. The impact of
GNSS ZTD data assimilation has been found to be slightly positive regarding the
forecasts of surface parameters. Given that GNSS ZTD data provide information
on atmospheric humidity also in clear-sky conditions, their importance is high in
mesoscale data assimilation. This is reflected in some of our case studies through
the preferable feature that ZTD data assimilation allows to reduce possible
humidity and precipitation overestimations originating from the model first guess.
Based on the overall impact of ZTD data, they are anticipated for an operational
implementation in the near future.
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Apart from the observation impact studies, an overview has been given
about the relative importance of observing networks and observed variables based
on the DFS method. The main message to be extracted out of these analysis
sensitivity studies is that humidity observations are really important in mesoscale
data assimilation, as they have relatively large influence on the analysis as
compared to other observed variables. This indicates that the density of humidity
observations have to be increased in the coming years either by using cloudy
information from satellites or by implementing humidity sensors on board
European aircrafts, similarly to the practice applied at the USA.

The paper gives an indication, that by increasing the resolution of mesoscale
models, it becomes highly important to implement local data assimilation at the
full resolution of the model, using high-resolution observations. It is shown that
doing so, the spin-up initialization scheme can be outperformed both in terms of
verification scores and case studies. This experience justifies that data
assimilation will remain one of the major directions for improving mesoscale
forecasts at the Hungarian Meteorological Service, with a special emphasis on
remote sensing data. Besides the implementation of new observations to the RUC
system, attention will have to be paid to the development of the background error
covariance representation, which is responsible for the efficient filtering and
spreading of observed information to the model space. It is foreseen that the
background error covariance matrix for AROME-Hungary will be recalculated
based on AROME ensembles of data assimilations similarly to the work of
Brousseau et al. (2011).
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