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Abstract—The operational AROME (Applications of Research for Operations at 
MEsoscales) mesoscale numerical weather prediction (NWP) model has been run using 
interpolated analyses of the ALADIN (Aire Limitée Adaptation Dynamique 
Développement International) NWP model for its initialization since the end of 2010 at 
the Hungarian Meteorological Service (HMS). In order to improve the initial conditions, 
a local three-dimensional variational (3DVAR) data assimilation system was developed 
for the Hungarian version of AROME (AROME-Hungary). Regarding the data 
assimilation cycling strategy, it was shown that 3 hourly rapid update cycling (RUC), 
which was implemented operationally in March 2013 using conventional observations, 
outperforms 6 hourly cycling method. This paper describes at length the main 
characteristics of this local data assimilation system and its impact on the model short-
range forecasts. Although the forecasts of AROME-Hungary based on a local data 
assimilation were already improved compared to the previous implementation 
(initialization via interpolated analyses of the ALADIN model), there is still a way to go 
to exploit the full benefit of the local 3DVAR assimilation cycle. Current development 
works aim at improving the system through exploitation of remote sensing observations 
(radar, GPS, satellite AMVs), with a special emphasis on humidity information. All tested 
observations showed promising performance on both the analyses and forecasts of the 
AROME-Hungary model, which should lead to their respective operational 
implementation in the near future. 
 
Key-words: operational numerical weather prediction, mesoscale data assimilation, rapid 

update cycle, remote sensing observations 



216 

1. Introduction 

State of the art mesoscale numerical weather prediction (NWP) models, such as 
ALADIN (Horányi et al., 1996) and AROME (Seity et al., 2010), describe the 
time evolution of small scale processes in the atmosphere (e.g., convection, sea 
breeze, fog), through the applied prognostic microphysical parametrization 
schemes and the non-hydrostatic dynamics. Advanced model dynamics and 
physics are, however, in vain, if the initial state does not contain appropriate 
information regarding the small-scale weather systems we aim to describe. The 
simplistic approach for the initialization of limited area models (LAMs) is to 
interpolate the analysis or the forecast of the driving model (i.e., a global model 
or another LAM) to the mesoscale grid. This approach, often referred to as spin-
up initialization, is computationally cheap (i.e., there is no need to run expensive 
data assimilation schemes), nevertheless it implies several drawbacks, which 
will be demonstrated in this section. The sophisticated and scientifically sound 
alternative of the spin-up initialization is to run a local data assimilation system 
in the LAM, combining the high-resolution first guess of the mesoscale model 
with the available high-density observations.  

Data assimilation is achieved by solving the BLUE (Best Linear Unbiased 
Estimation) analysis equation, which shows that the two main information used 
for estimating the initial state (xa) are the background (xb) and the actual 
observation set (y) (see e.g., Kalnay, 2003; Lorenc, 1986; Evensen, 2009): 

 
 ( )( )bba xHyK+x=x −  (1) 
 
In Eq.(1), K stands for the Kalman gain determining the weight of the 
background and the observations in each gridpoint in an optimal way, i.e., based 
on their reliability in a statistical sense. H denotes the observation operator, 
which enables the comparison of the observations with the background through 
a projection from the model space to the observation space. 

In practice local data assimilation is substantially more expensive to 
implement than spin-up initialization (both computationally and regarding 
manpower), but in turn, it enables a more accurate representation of small-scale 
phenomena in the initial state. In order to demonstrate this, the kinetic energy 
spectra for a spin-up analysis (ALADIN analysis interpolated to the AROME-
Hungary grid) and the local 3DVAR analysis of AROME-Hungary are plotted 
in Fig. 1. It can be seen that the energy spectra for the AROME analysis follows 
rather close the theoretical slope of energy cascade, i.e., k–3 for small k 
wavenumbers (large scales) and k–5/3 for high k wavenumbers (small scales). In 
contrast, the energy spectra of the spin-up analysis is far from the theoretical 
slopes, especially at mesoscales (above wavenumber 50, which corresponds to 
spatial scales smaller than 25 km), where the energy curve is rather noisy. The 
mesoscale noise in the spin-up analysis is introduced by the interpolation, and it 
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2. Operational data assimilation system of the AROME mesoscale model 

2.1. The assimilation system 

The local data assimilation system of AROME-Hungary is based on a 3 hourly 
rapid update cycle (RUC). The organization of one particular assimilation step at 
00 UTC is shown schematically in Fig. 2, where the lateral boundary conditions 
in the assimilation cycle are provided by the global ECMWF/IFS (European 
Centre for Medium-Range Weather Forecasts / Integrated Forecast System) 
model, and surface parameters are initialized either using the surface analysis of 
the operational ALADIN model where available (at synoptic times, i.e., 00, 06, 
12, and 18 UTC) or using the previous AROME/SURFEX (SURFace 
Externalized) forecast (at sub-synoptic times i.e., 03, 09, 15, and 21 UTC). 
 
 
 

 
Fig. 2. Schematic figure of the data assimilation cycle applied for AROME showing the 
elements of a 00 UTC assimilation run. 

 
 
 

The core of AROME-Hungary data assimilation system is an incremental 
3DVAR method, where the basic mathematical formulation and its 
corresponding implementation is very similar to the one used in the IFS, 
ARPEGE, and ALADIN models (Courtier et al., 1998; Fischer et al., 2005; 
Vasiliu and Horányi, 2005; Bölöni 2006). An important component of the 
3DVAR is the representation of background error statistics which plays a key 
role in filtering the information coming from observations and spreading it out 
to the model grid (see e.g., Berre 2000; Brousseau et al., 2011). In the current 
operational system, the background error covariance matrix was sampled  from 
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the downscaling of an ALADIN Ensemble Data Assimilation (EDA) 
experiment, run  for a summer period using 3-hour forecast ranges and 5 EDA 
members to get sufficient statistical sample (Bölöni et al., 2014). Input 
observations for the AROME-Hungary 3DVAR suite are provided by the 
OPLACE (Observation Preprocessing for LACE (Limited Area modeling for 
Central Europe)) system, which includes both conventional and non-
conventional observations. Although the currently operational AROME-
Hungary data assimilation system uses only conventional observations, the 
system is able to assimilate non-conventional observations, as described in 
Section 3.  

Delivering the mesoscale NWP forecasts as early as possible is of high 
priority for every operational forecasting centre. In order to find the optimal 
observation cut-off time (waiting time after the nominal analysis time) of the 
operational AROME-Hungary data assimilation system, the timeliness of the 
incoming observations was diagnosed for the area of interest. In Fig. 3, the 
availability of conventional observations at 00 UTC is shown, based on the amount 
of data received by the OPLACE system. After gaining this result, the observation 
(short) cut-off time has been set to one hour, which brings the fastest possible 
production of AROME forecast with an almost complete input observation set. 
This rather early cut-off enables a faster AROME forecast production compared to 
the former operational version of AROME-Hungary, which was based on a spin-up 
initialization from the 3DVAR analysis of the ALADIN model, because the 
ALADIN data assimilation system uses longer cut-off. 
 
 

 
 

Fig. 3. Estimation of the optimal short cut-off time (considering AROME integration 
domain at 00 UTC) on January 26 (red columns), 27 (green columns) and 28 (blue 
columns) 2013. 
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2.2. The Rapid Update Cycle 

In mesoscale NWP models, the accuracy of initial conditions is getting more and 
more crucial with an increasing resolution, hence small scale processes of the 
atmosphere have less and less predictability (Fabry and Sun, 2009). The rapid 
update cycling approach with increased analysis frequency in the assimilation cycle 
aims to involve more observations with reduced representativity error in time. It is 
assumed that the more observations we consider for the update of the model state, 
the better initial conditions we will get when starting a forecast from an analysis of 
the assimilation cycle. Considering conventional observations for instance, the 
different amount of used observations between a 6 hourly data assimilation cycle 
and a 3 hourly RUC is plotted in Fig. 4 for a short period. At sub-synoptic times, 
mainly aircraft and SYNOP reports provide almost a double amount of data per 
day, due to the 4 extra analyses. To further emphasize the benefits of a RUC, it 
should be mentioned that many remote sensing observations are available with high 
temporal frequency, which are potentially beneficial in a data assimilation system 
with high frequency cycling. Also, many of the remote sensing observations are 
available in a very timely manner, almost immediately after analysis time, which 
allows to keep the operational observation cut-off time rather short, and thus to 
provide the forecasts with an early delivery. 
 
 

 
Fig. 4. The number of conventional observations used in a day in the RUC 
implementation (green) and in a 6 hourly cycling (red). The amount of data was counted 
in the period of March 15-23, 2014. 

 
 
Beside these attractive features of the RUC system, there are some issues 

which have to be treated carefully in case of using a frequent assimilation cycle, 
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and thus, shorter background forecast lengths. The forecast model integration may 
imply spin-up effects (noise due to spurious gravity waves or imbalances between 
dynamics, atmospheric and soil physics) at the very short ranges, which can be 
accumulated in the assimilation cycle through the background forecasts, and thus, 
lead to degradation in the analyses and the forecasts. A usual practice in NWP, and 
in the Hungarian version of the ALADIN model as well, is the use of initialization 
techniques e.g., digital filter initialization (DFI) (Daley, 1991; Lynch et al, 1997), 
which is a low-pass spectral filter removing high-frequency components of the 
initial conditions. In case of AROME-Hungary, no DFI is applied because such 
filtering is assumed to be too strong in case of a mesoscale non-hydrostatic model, 
where gravity waves are described by the dynamics. To diagnose spin-up effects in 
AROME-Hungary, surface pressure tendencies have been examined for very short-
range forecasts (+2 hours) for an arbitrarily chosen case. In Fig. 5, time evolution 
of the surface pressure tendency provided by three different forecasts is shown for a 
particular gridpoint over orography. The red curve corresponds to a forecast, which 
was started from an AROME 3DVAR analysis, using a time-consistent coupling 
scheme, i.e., when the lateral boundary condition (LBC) at initial time is the 
interpolated global IFS forecast. The blue curve stands for a similar run with the 
only difference of using a space-consistent coupling scheme, i.e., when the lateral 
boundary condition (LBC) at initial time is the AROME 3DVAR analysis itself. As 
an additional reference, the tendency from an AROME forecast using a spin-up 
initialization is added (green curve), i.e., where both the initial condition and the 
LBC at initial time is the interpolated global IFS forecasts. As the high amplitude 
oscillation in the time evolution of surface pressure tendency is an indicator of 
noise, it has been concluded based on Fig. 5, that AROME forecasts using a RUC 
assimilation with a space-consistent coupling scheme imply less noise than a RUC 
with a time-consistent coupling approach or the spin-up initialization. Supposedly, 
the higher amplitude oscillation in case of the spin-up initialization is caused by the 
interpolation noise which is more emphasized over orography. It should be also 
mentioned that plotting the evolution of surface pressure tendency on a horizontal 
map (not shown) supports the choice for the space-consistent coupling scheme. 
Namely, in the time-consistent case, noise patterns (indicated by large tendencies) 
penetrate from the domain borders towards the middle of the domain in a 
rectangular shape. In Fig. 5, this is captured by the red curve at integration steps 
40–45 as an outstanding wave. An explanation for this structured noise might be 
that imbalances between the local 3DVAR analysis and the LBC at initial time 
arise, due to the inconsistent model states of the AROME and IFS models near the 
boundaries. The final decision on implementing a 3 hourly RUC instead of a 
traditional 6 hourly cycling was based on a comparison study over a 1 month 
period during summer 2012, where the skill of these two cycling options was 
measured. Verification results – which will be studied in the next section – 
reflected a better performance of the 3 hourly RUC, leading to its operational 
implementation. 
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Fig. 5. Temporal evolution of surface pressure tendency (Pa/min) over orography during 
the first 2 hours of a forecast concerning spin-up initialization (green dashed line), time-
consistent coupling approach (red line), and space-consistent coupling approach (blue 
dashed line). 

 
 

2.3. The impact of local data assimilation scheme on the analysis and forecast 

For measuring the impact of the local data assimilation scheme, three 
experiments with AROME-Hungary have been run and compared for several 
periods based on objective verification scores primarily. The three experiments 
are an AROME suite based on spin-up initialization (called DYNA), and two 
AROME suites based on local 3DVAR data assimilation, one of them using a 
6 hourly cycling (called CONV6H) and another one using a 3 hourly rapid 
update cycling (called CONV). Forecasts have been run up to +36 hours starting 
at 00 UTC network times. Concerning the verification, both point-based and 
object-based scores have been computed. In the point-based verification, surface 
and radiosonde observations have been used as reference. The applied object-
based method calculates average precipitation of forecasted weather objects (or 
alternatively the full domain average), and compares with calibrated radar 
precipitation measurements as reference. In Figs. 6a and 6b, 10 m wind and 
mean sea level pressure scores are shown for the period between June 25 and 
July 25, 2012. It is rather clear from these figures that both the 6 hourly and the 
3 hourly RUC 3DVAR provide an added value compared to the spin-up 
initialization with respect to both RMSE and BIAS. Moreover, the 3 hourly 
RUC provides slightly better scores than the 6 hourly cycling during daytime, 
while during the night, scores show a rather low sensitivity to the cycling 
frequency. To demonstrate the impact on precipitation, object-based verification 
score (domain average precipitation) is shown in Fig. 7. It can be seen, that in 
comparison with the spin-up initialization, both the 6 hourly 3DVAR cycling 
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Fig. 7. Comparison of 3h RUC (blue), 6 hourly cycling (red) and the spin-up initialization 
scheme (green) regarding domain average precipitation (mm/h). The reference is the 
calibrated radar measurement (black). 

 

 

 

 

 
Based on the success of the RUC approach (Figs. 6a, 6b, and 7), a 

parallel suite with a 3 hourly RUC data assimilation system was compared 
with the former operational AROME-Hungary system (based on spin-up 
initialization) over the period from February 20 to March 12, 2013. This 
parallel suite was set up in a fully operational environment, providing real 
time outputs for the forecasters of the Hungarian Meteorological Service (this 
time both for 00 and 12 UTC base times), with the main aim to make a final 
decision about the operational implementation of the RUC system, in case of 
preferable scores and positive feedbacks from the forecasters. Based on the 
verification results, the RUC system clearly outperformed the forecasts of the 
former operational AROME-Hungary suite with spin-up initialization, which 
is demonstrated in Figs. 8a, 8b for 2 m temperature and in Fig. 9 for 
precipitation. Feedbacks of the forecasters also confirmed the slight but 
consistent improvements implied by the RUC system, and this led to its 
operational implementation on March 17, 2013. 
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Fig. 8a. RMSE and BIAS scores of AROME forecasts according to the spin-up 
initialization (DYNA – green), and the 3 hourly rapid update cycle (CONV – blue) for 
2 m temperature (oC). 

 

 

 

 

 

 

 

 
Fig. 8b. Normalized RMSE differences according to the spin-up initialization (DYNA – 
green), and the 3 hourly rapid update cycle (CONV – blue) for 2 m temperature (oC). 
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where H(xa) gives the analysis state at observation locations using a 
background and the observations (y), and H(x'a) stands similarly for the 
analysis at observation space but using the perturbed observations (y’) (and 
the same background). In Eq. (3), R stands for the observation error 
covariance matrix. 

Therefore, DFS can be calculated through a random perturbation of the 
observations, and the method is flexible in a sense that DFS values can be 
computed for any subset of the available observational data. For a given date, 
the DFS was computed with conventional and some experimentally used non-
conventional observations. In order to verify the influence of the available 
observations, both the absolute and the relative DFS diagnostics were 
computed (Fig. 10). Absolute DFS stands for what have been explained 
above in Eqs. (2) and (3), while relative DFS is the absolute DFS normalized 
by the number of observations within the given observation subset. The first 
conclusion based on the absolute DFS is that the largest contribution to the 
analysis is provided by wind observations, i.e., the largest amount of 
information is extracted from these observations in the current data 
assimilation system. On the other hand, relative DFS reflects the importance 
of humidity (from surface SYNOP stations and TEMP radiosondes), RADAR 
reflectivity (RADAR-Z), and GNSS (global navigation satellite system) ZTD 
(zenith total delay) observations. In conclusion, DFS diagnostics show that 
radar reflectivity and GNSS ZTD observations are promising candidates for 
assimilation in the future version of the RUC system. It should be mentioned 
that DFS provides a theoretical measure of the information content projected 
from the observations to the analysis and it does not provide any indications 
on the impact attributed to the forecasts. Another point to be added here is 
that no radiance observations have been considered and diagnosed in the 
recent RUC system. 

3. Use of non-conventional observations in the AROME 3DVAR system 

In the following section, we present the latest developments of the RUC system 
since its operational implementation. The need of using more observations, 
especially non-conventional ones, was already mentioned. Specifically, the 
observations measuring humidity are potentially good candidates based on the 
results of the DFS analysis sensitivity study shown in the previous section. At 
the same time, to gain advantage of the RUC system, early accessible 
observations with high frequency and high density are also required. Taken into 
account these objectives, the atmospheric motion vectors (AMV) from Meteosat 
Second Generation (MSG) geostationary satellite, RADAR measurements as 
reflectivity and radial wind, and GNSS ZTD observations have been 
investigated in the operational data assimilation system of AROME-Hungary. 
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Fig. 10. Absolute and relative degrees of freedom for signal (DFS) for experimental data 
assimilation of AROME-Hungary at 12 UTC, January 3, 2014. 

 

 
 

3.1. The impact of the Atmospheric Motion Vectors 

EUMETSAT (European Organization for the Utilization of Meteorological 
Satellites) MSG provides sets of satellite winds (AMVs) extracted from 
sequences of well-navigated and calibrated images produced by the SEVIRI 
(Spinning Enhanced Visible and Infrared Imager) instrument. Accordingly, 
AMVs are derived from SEVIRI infrared, water vapor, and visible channels. At 
the HMS MSG AMV date is received through the EUMETCast broadcasting 
service of EUMETSAT with hourly frequency and processed in OPLACE for 
data assimilation purposes. 

MSG AMV data is proved to be beneficial in nowcasting applications and 
in data assimilation systems (Randriamampianina, 2006b). Furthermore, 
numerous examples exist (Forsythe et al., 2014), where AMVs are operationally 
assimilated in a similar way like the adopted technique used in the ALADIN 
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well-chosen linear combination of model simulated reflectivities in the 
neighborhood of the observation provides comparable quantities to what is 
observed (see Wattrelot et al. (2014) for more details). 

In the observing system of the Hungarian Meteorological Service dual-
polarized Doppler radars are used which provide reflectivity and radial wind 
observations with 240 km and 120 km range, respectively. Raw radar data 
requires specific pre-processing in consideration of data assimilation which 
consists of the elimination of non-meteorological and noisy signals. Due to this 
quality control, for instance, reflectivity data under 7 dBz is filtered to avoid 
clear-sky echo and also unwanted RLAN (Radio Location Area Network) 
signals are rejected. After a thorough pre-processing with quality control, 
RADAR data is presented in Cartesian coordinates and in BUFR, which is one 
of the accepted format of the current 3DVAR system. 

An observing system experiment with AROME-Hungary was made for an 
early, but convective summer period of May 15 – June 18, 2012. Point- and 
object-based verifications were computed to evaluate the performance of the 
operational AROME-Hungary and experimental runs including a combination of 
radar reflectivity and radial wind. In the first experiment with assimilation of 
both the radar Doppler wind and reflectivity, skill scores showed positive impact 
on forecasts of precipitation, but we observed also a cold and wet bias for 
surface parameters (not shown). A possible explanation of the observed bias 
might be that the assimilation of reflectivity data over-saturates the planetary 
boundary layers (PBL), which degrades the forecast of surface parameters 
through physical process along the model integration. To verify this assumption, 
another experiment was run avoiding the use of reflectivity observations below 
1000 m from all 3 used radar stations. As a result, no degradation on surface 
parameters was observed, but on the other hand, the impact on precipitation 
forecasts was also reduced. The average intensity of the precipitation objects 
was verified against objects measured by the radar (Fig. 12). The four curves are 
respectively the operational AROME-Hungary (AromeCONV), the 
experimental AROME with complete set of radar data (AromeFULL), AROME 
runs with blacklisted reflectivity (AromeBLACK), and radar observations 
(RADAR). In Fig. 12, one can see that AromeBLACK provides the closest 
estimation to radar, however, the diurnal cycle of the maximum precipitation is 
still slightly shifted with delay in time. Additionally, a case study is shown in 
Fig. 13, where 3 hourly accumulated precipitation forecasts are plotted for all 
the three tested runs. One can see that the AromeFULL run predicts more 
realistic precipitation over north-eastern Hungary than AromeCONV, but it 
overestimates slightly in the mid-western part of the country. AromeBLACK is 
able to correct this overestimation, but the positive signal is also suppressed  by 
filtering reflectivity. To conclude, the assimilation of radar data has major 
impact on forecasts of precipitation, but the quality control has to be further 
investigated and improved for better accounting of all potential measurements. 
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Fig. 12. Object-based verification of radar data assimilation experiments where average 
intensity of precipitation (mm/h) objects is verified against radar measurements for the period 
June 7 – June 18, 2012. AromeCONV: Operational AROME-Hungary (red line), 
AromeFULL: experimental AROME with RADAR reflectivity and radial wind observations 
added to conventional ones (green line), AromeBLACK: experimental AROME with same set 
of observations except reflectivity which was blacklisted below 1000 m elevation (blue line). 

 

 

 
 

Fig. 13. A case study at 03 UTC, June 5, 2012 for 3 hourly accumulated precipitation 
forecast according to AROME model with operational configuration (AROME CONV), 
experimental AROME with radar reflectivity and radial wind (AROME FULL), 
experimental AROME with blacklisted low level reflectivity (AROME BLACK), and 
radar composite image (RADAR OBS). 

3.3. The impact of  the GNSS ZTD observations 

Signal delay originating from different constituents of the troposphere and 
stratosphere can be extracted from satellite constellations of GNSS. The zenith 
tropospheric delay (ZTD), which is the converted-to-distance time delay, 
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provides valuable information on atmospheric water vapor content expressed in 
length units along the zenithal direction above the ground-based GPS receiver 
station. Bevis et al., (1992) describes at length the principle of such 
measurement. The number of ground-based GPS stations over Europe has been 
increasing during the last years, and their use for meteorological purposes is 
coordinated by EUMETNET GNSS Water Vapour Programme (E-GVAP). E-
GVAP also provides a data hub allowing the assimilation of GNSS ZTD 
observations with high spatial and temporal resolution. The Hungarian GNSS 
network (so called SGOB) operated by the Satellite Geodetic Observatory of 
Hungary was added to E-GVAP officially at the end of 2013, which provides 
access to a dense station network of ground-based GPS over the Carpathian 
Basin. This was a good motivation for us to assimilate the GNSS ZTD data. 

The impact of GPS ZTD observations in data assimilation systems has been 
already investigated in the ARPEGE/ALADIN/AROME model family (see e.g., 
Yan et al, 2008; Poli et al, 2007; Storto and Randriamampianina, 2010). For the 
assimilation of E-GVAP ZTD data, a whitelist approach is used containing only 
stations with good-quality measurements. The whitelist is created according to the 
following criteria evaluated during a passive assimilation for a period of 15 days: 
i) the availablility of data is more than 40%, ii) observation minus background 
departures have Gaussian distribution, the absolute bias and also the standard 
deviation are both less than 40 mm, iii) the difference between station altitude and 
corresponding model orography height is less than 250 meter. We were able to 
choose 67 active stations inside our area of interest. The computed bias at each 
selected station is used as static bias correction in the assimilation scheme. 

The impact of ground-based GNSS ZTD was investigated with AROME-
Hungary over a winter period of 2014, namely January 5 to 27. The operational 
AROME-Hungary forecasts and the experimental AROME run with GNSS ZTD 
were compared with verification against SYNOP and radiosonde observations. 
In Fig. 14a, RMSE and BIAS scores are plotted for 2 m dew point temperature 
forecasts and the corresponding (Fig. 14b) normalized RMSE differences with 
significance test check. It can be seen that the experimental run (marked PGPS) 
has better skill scores on forecast of surface dew point temperature than the 
operational one (marked CONV), however, it is not statistically significant. In 
addition, one case study is presented in Fig. 15, showing the accumulated 
precipitation during the first 3 hours of the forecasts. In this case, the operational 
AROME-Hungary (CONV) provided a strong overestimation of precipitation as 
compared to the measured SYNOP observations plotted with numbers, probably 
due to spin-up effects. By assimilating ZTD observations (PGPS), the AROME 
forecast became more realistic with a reduction in the amount of predicted 
precipitation. This example showed, that the assimilation of GNSS ZTD 
observations is advantageous for improving short-range model forecasts, 
particularly regarding humidity, which is very promising to further improve the 
current operational AROME system. 
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Fig. 15. A case study at 15 UTC, January 3, 2014 for 3 hourly accumulated precipitation 
forecast, AROME model with operational configuration (CONV), experimental AROME 
with GNSS ZTD (PGPS) and SYNOP precipitation (in numbers) are plotted. 

 

 

 

4. Summary and conclusions 

The current operational RUC data assimilation system of the AROME-Hungary 
mesoscale model has been described with a special emphasis on the design of the 
assimilation cycle and the use of observations. It has been demonstrated, that the 
RUC system using conventional observations (surface, radiosonde, and aircraft 
measurements) improves the reliability of short-range forecasts compared to the 
spin-up initialization technique (former operational configuration) and also 
compared to the use of a 6 hourly data assimilation cycle.  

The most important attempts for improving the current operational RUC 
system so far consisted of impact studies using remote sensing observations, such 
as MSG AMV, radar reflectivity, radial wind, and GNSS ZTD. The impact of 
AMV data assimilation was found to be significantly positive on the forecast of 
surface parameters, up to a forecast range of 15 hours. These results imply an 
operational use of MSG AMV data in the near future. The assimilation of radar 
data has been found to be useful in ameliorating precipitation forecasts, however, 
as a side effect of radar data assimilation, a bias have been found in surface 
parameters. The cause of these systematic errors has to be understood in order to 
achieve an operational implementation of radar data assimilation. The impact of 
GNSS ZTD data assimilation has been found to be slightly positive regarding the 
forecasts of surface parameters. Given that GNSS ZTD data provide information 
on atmospheric humidity also in clear-sky conditions, their importance is high in 
mesoscale data assimilation. This is reflected in some of our case studies through 
the preferable feature that ZTD data assimilation allows to reduce possible 
humidity and precipitation overestimations originating from the model first guess. 
Based on the overall impact of ZTD data, they are anticipated for an operational 
implementation in the near future. 
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Apart from the observation impact studies, an overview has been given 
about the relative importance of observing networks and observed variables based 
on the DFS method. The main message to be extracted out of these analysis 
sensitivity studies is that humidity observations are really important in mesoscale 
data assimilation, as they have relatively large influence on the analysis as 
compared to other observed variables. This indicates that the density of humidity 
observations have to be increased in the coming years either by using cloudy 
information from satellites or by implementing humidity sensors on board 
European aircrafts, similarly to the practice applied at the USA. 

The paper gives an indication, that by increasing the resolution of mesoscale 
models, it becomes highly important to implement local data assimilation at the 
full resolution of the model, using high-resolution observations. It is shown that 
doing so, the spin-up initialization scheme can be outperformed both in terms of 
verification scores and case studies. This experience justifies that data 
assimilation will remain one of the major directions for improving mesoscale 
forecasts at the Hungarian Meteorological Service, with a special emphasis on 
remote sensing data. Besides the implementation of new observations to the RUC 
system, attention will have to be paid to the development of the background error 
covariance representation, which is responsible for the efficient filtering and 
spreading of observed information to the model space. It is foreseen that the 
background error covariance matrix for AROME-Hungary will be recalculated 
based on AROME ensembles of data assimilations similarly to the work of 
Brousseau et al. (2011). 
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